| [1] |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
|
| [2] |
HAMDY F C, DONOVAN J L, LANE J A, et al. Fifteen-year outcomes after monitoring, surgery, or radiotherapy for prostate cancer[J]. N Engl J Med, 2023, 388(17): 1547-1558.
doi: 10.1056/NEJMoa2214122
|
| [3] |
CHEN K, O’BRIEN J, MCVEY A, et al. Combination treatment in metastatic prostate cancer: is the bar too high or have we fallen short[J]. Nat Rev Urol, 2023, 20(2): 116-123.
doi: 10.1038/s41585-022-00669-z
|
| [4] |
BHOIR S, DE BENEDETTI A. Targeting prostate cancer, the ‘tousled way’[J]. Int J Mol Sci, 2023, 24(13): 11100.
doi: 10.3390/ijms241311100
|
| [5] |
GILLESSEN S, ATTARD G, BEER T M, et al. Management of patients with advanced prostate cancer: report of the advanced prostate cancer consensus conference 2019[J]. Eur Urol, 2020, 77(4): 508-547.
doi: S0302-2838(20)30048-8
pmid: 32001144
|
| [6] |
GAO F Y, LI X T, XU K, et al. C-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment[J]. Cell Commun Signal, 2023, 21(1): 28.
doi: 10.1186/s12964-023-01043-1
|
| [7] |
LLOMBART V, MANSOUR M R. Therapeutic targeting of ‘undruggable’ MYC[J]. eBioMedicine, 2022, 75: 103756.
doi: 10.1016/j.ebiom.2021.103756
|
| [8] |
BOUWSTRA R, VAN MEERTEN T, BREMER E. CD47-SIRPα blocking-based immunotherapy: current and prospective therapeutic strategies[J]. Clin Transl Med, 2022, 12(8): e943.
doi: 10.1002/ctm2.943
pmid: 35908284
|
| [9] |
LIU Q F, LI J Y, ZHENG H J, et al. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T[J]. Mol Cancer, 2023, 22(1): 28.
doi: 10.1186/s12943-023-01735-9
pmid: 36750830
|
| [10] |
LAHIRI A, MAJI A, POTDAR P D, et al. Lung cancer immunotherapy: progress, pitfalls, and promises[J]. Mol Cancer, 2023, 22(1): 40.
doi: 10.1186/s12943-023-01740-y
pmid: 36810079
|
| [11] |
BEDKE J, ALBIGES L, CAPITANIO U, et al. The 2022 updated European association of urology guidelines on the use of adjuvant immune checkpoint inhibitor therapy for renal cell carcinoma[J]. Eur Urol, 2023, 83(1): 10-14.
doi: 10.1016/j.eururo.2022.10.010
pmid: 36511268
|
| [12] |
REBUZZI S E, RESCIGNO P, CATALANO F, et al. Immune checkpoint inhibitors in advanced prostate cancer: current data and future perspectives[J]. Cancers, 2022, 14(5): 1245.
doi: 10.3390/cancers14051245
|
| [13] |
ZIMMERLI D, BRAMBILLASCA C S, TALENS F, et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling[J]. Nat Commun, 2022, 13(1): 6579.
doi: 10.1038/s41467-022-34000-6
|
| [14] |
LEI T Y, XU T W, ZHANG N, et al. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis[J]. Pharmacol Res, 2023, 188: 106668.
doi: 10.1016/j.phrs.2023.106668
|
| [15] |
KRESS T R, SABÒ A, AMATI B. MYC: Connecting selective transcriptional control to global RNA production[J]. Nat Rev Cancer, 2015, 15(10): 593-607.
doi: 10.1038/nrc3984
pmid: 26383138
|
| [16] |
CONACCI-SORRELL M, MCFERRIN L, EISENMAN R N. An overview of MYC and its interactome[J]. Cold Spring Harb Perspect Med, 2014, 4(1): a014357.
|
| [17] |
DHANASEKARAN R, DEUTZMANN A, MAHAUAD-FERNANDEZ W D, et al. The MYC oncogene: the grand orchestrator of cancer growth and immune evasion[J]. Nat Rev Clin Oncol, 2022, 19(1): 23-36.
doi: 10.1038/s41571-021-00549-2
|
| [18] |
DUFFY M J, O’GRADY S, TANG M H, et al. MYC as a target for cancer treatment[J]. Cancer Treat Rev, 2021, 94: 102154.
doi: 10.1016/j.ctrv.2021.102154
|
| [19] |
YANG Y, YANG Z, YANG Y. Potential role of CD47-directed bispecific antibodies in cancer immunotherapy[J]. Front Immunol, 2021, 12: 686031.
doi: 10.3389/fimmu.2021.686031
|
| [20] |
LOGTENBERG M E W, SCHEEREN F A, SCHUMACHER T N. The CD47-SIRPα immune checkpoint[J]. Immunity, 2020, 52(5): 742-752.
doi: S1074-7613(20)30169-2
pmid: 32433947
|
| [21] |
KIM H, BANG S, JEE S, et al. Clinicopathological significance of CD47 expression in hepatocellular carcinoma[J]. J Clin Pathol, 2021, 74(2): 111-115.
doi: 10.1136/jclinpath-2020-206611
pmid: 32576628
|
| [22] |
LI Z H, LI Y, GAO J, et al. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy[J]. Life Sci, 2021, 273: 119150.
doi: 10.1016/j.lfs.2021.119150
|
| [23] |
ZHOU F Y, FENG B, YU H J, et al. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade[J]. Adv Mater, 2019, 31(14): e1805888.
|
| [24] |
MEŠKYTĖ E M, KESKAS S, CIRIBILLI Y. MYC as a multifaceted regulator of tumor microenvironment leading to metastasis[J]. Int J Mol Sci, 2020, 21(20): 7710.
doi: 10.3390/ijms21207710
|
| [25] |
CHEN Y, WANG S H, LIU T C, et al. WAP four-disulfide core domain protein 2 gene (WFDC2) is a target of estrogen in ovarian cancer cells[J]. J Ovarian Res, 2016, 9: 10.
doi: 10.1186/s13048-015-0210-y
|
| [26] |
XIONG Y Y, YUAN L S, CHEN S, et al. WFDC2 suppresses prostate cancer metastasis by modulating EGFR signaling inactivation[J]. Cell Death Dis, 2020, 11(7): 537.
doi: 10.1038/s41419-020-02752-y
pmid: 32678075
|