China Oncology ›› 2025, Vol. 35 ›› Issue (10): 968-985.doi: 10.19401/j.cnki.1007-3639.2025.10.010
• Guideline and Concensus • Previous Articles
Multiple Primary and Unknown Primary Tumors Special Committee of China Anti-Cancer Association , Shanghai Anti Cancer Association Multiple Primary and Unknown Primary Tumor Special Committee , Lymphocytic Disease Group, Hematology Branch, Chinese Medical Association , Rare Disease Group, Hematology Branch, Chinese Medical Association
Received:2025-07-25
Revised:2025-10-20
Online:2025-10-30
Published:2025-11-19
Supported by:Share article
CLC Number:
Multiple Primary and Unknown Primary Tumors Special Committee of China Anti-Cancer Association , Shanghai Anti Cancer Association Multiple Primary and Unknown Primary Tumor Special Committee , Lymphocytic Disease Group, Hematology Branch, Chinese Medical Association , Rare Disease Group, Hematology Branch, Chinese Medical Association . Expert consensus on diagnosis and treatment of hematologic malignancies with solid tumors (2025 version)[J]. China Oncology, 2025, 35(10): 968-985.
Tab. 1
The GRADE system for evidence quality"
| 项目 | 内容 |
|---|---|
| 证据级别 | |
| 高质量 | 证据基于高水平前瞻性随机对照临床试验或关于其的Meta分析,研究结果具有高度可信性和推广性 |
| 中等质量 | 证据基于低水平随机试验或设计良好的非对照试验或队列研究,可信度一般 |
| 低质量 | 证据基于病例对照研究、回顾性研究、亚组分析、专家共识或科学假设,可信度较低 |
| 推荐级别 | |
| 强推荐 | 证据级别较高,结果与因素具有显著相关性;或虽然证据级别不高,但干预措施获益明确、风险低,为临床基本原则 |
| 一般推荐 | 证据级别较低,结果与因素相关性不显著或无明确证据显示相关性;或干预措施的获益与风险尚不明确,需个体化决策 |
Tab. 4
Immunohistochemical marker panel (HM-ST)"
| 肿瘤类型 | 推荐免疫组织化学检测标志物组合 | 备注 |
|---|---|---|
| 肺腺癌 | TTF-1、napsin A、CK7 | TTF-1/napsin A阳性支持肺来源;CK7辅助鉴别腺癌 |
| 肺鳞癌 | p40、CK5/6、p63 | p40/p63强阳性为鳞癌特征;TTF-1通常阴性 |
| 乳腺癌 | ER、PR、HER2、GATA3、Ki-67增殖指数 | ER/PR/HER2指导治疗;GATA3支持乳腺来源;Ki-67增殖指数评估增殖活性 |
| 胃癌 | CK7、CK20、CDX2、HER2 | CK7+/CK20-或CDX2+支持胃腺癌;HER2检测用于靶向治疗 |
| 结直肠癌 | CK20、CDX2、SATB2、MLH1/MSH2/MSH6/PMS2(错配修复蛋白) | CK20+/CDX2+支持肠源性;MMR检测筛选林奇综合征 |
| 肝癌 | HepPar-1、arginase-1、glypican-3、AFP | HepPar-1/arginase-1特异性高;glypican-3/AFP辅助诊断 |
| 前列腺癌 | PSA、PSAP、NKX3.1、AMACR | PSA/PSAP/NKX3.1阳性支持前列腺来源;AMACR辅助鉴别癌与良性增生 |
| 卵巢癌 | CK7、PAX8、WT1、ER、p16、napsinA、HNF1β、p53 | PAX8+/WT1+支持浆液性癌 |
| 甲状腺癌 | TTF-1、TG、calcitonin(髓样癌)、BRAF V600E(如适用) | TTF-1+/TG+支持甲状腺滤泡来源;calcitonin诊断髓样癌 |
| 淋巴瘤 | B细胞:CD20、CD19、PAX5、BCL2、CD10、BCL6等;T细胞:CD3、CD5、CD4、CD8、CD30等;增殖指数:Ki-67;EBER原位杂交 | 需结合CD系列及分子检测(如MYC/BCL2重排) |
| 黑色素瘤 | S100、SOX10、melan-A、HMB45、BRAF V600E(如适用) | S100/SOX10敏感但非特异;melan-A/HMB45特异性高 |
| 肾细胞癌 | PAX8、CAIX、CD10、RCC | PAX8+/CAIX+支持透明细胞癌;RCC标志物辅助诊断 |
| 神经内分泌肿瘤 | Synaptophysin、chromogranin A、CD56、Ki-67增殖指数 | Syn/chromogranin A必查;Ki-67增殖指数分级(如G1/G2/G3) |
Tab. 5
Examples of the "treating different diseases with the same therapy" treatment regimen"
| 临床情景(HM-ST 组合) | 核心药物/机制 | 推荐方案示例(含具体药物) | 关键注意事项 |
|---|---|---|---|
| 经典型霍奇金淋巴瘤合并PD-L1高表达的NSCLC | 免疫检查点抑制剂(PD-1抑制剂) | 帕博利珠单抗或纳武利尤单抗单药或联合化疗: ① 序贯策略:先以A-AVD方案(维布妥昔单抗、多柔比星、长春花碱、达卡巴嗪)治疗经典型霍奇金淋巴瘤,待其缓解后,使用帕博利珠单抗单药治疗NSCLC。 ② 同步策略(适用于特定晚期经典型霍奇金淋巴瘤):可考虑纳武利尤单抗联合AVD方案 | 严密监测并管理irAE,特别是肺炎、肝炎和内分泌毒性。两种疾病均可能引发irAE,需仔细鉴别 |
| CML合并GIST | TKI | 伊马替尼标准剂量治疗: ① CML慢性期:伊马替尼400 mg 每日1次。 ② GIST:根据c-Kit/PDGFRA基因突变类型及治疗目的(辅助/晚期),伊马替尼剂量通常为400 mg 每日1次 | 伊马替尼可同时高效控制两种疾病。需常规监测血常规、肝功能,并关注水肿、皮疹、肌肉痉挛等常见不良反应 |
| 复发/难治性PTCL合并激素受体阳性/HER2阴性晚期乳腺癌 | 组蛋白去乙酰化酶(HDAC)抑制剂 | 西达本胺的应用 这是一个复杂的场景,通常采用序贯治疗: ① 优先以含吉西他滨或培美曲塞等药物的方案挽救治疗PTCL。 ② 在淋巴瘤病情稳定后,采用西达本胺联合内分泌治疗(如依西美坦)治疗乳腺癌,同时可能对惰性T细胞淋巴瘤有维持作用 | 同步治疗毒性风险高,需在经验丰富的中心MDT指导下进行。重点关注血液学毒性、心脏毒性(QTc间期延长)和血栓风险 |
| 复发难治性DLBCL合并铂类药物敏感的实体瘤(如卵巢癌、肺癌) | 铂类化疗药物 | 基于铂类药物的挽救性化疗方案: ① R-ICE方案(利妥昔单抗、异环磷酰胺、卡铂、依托泊苷)。 ② R-DHAP方案(利妥昔单抗、地塞米松、大剂量阿糖胞苷、顺铂)。 以上方案中的铂类药物(卡铂/顺铂)不仅是淋巴瘤挽救治疗的核心,也对多种实体瘤有效 | 毒性剧烈,需强有力的支持治疗。重点管理肾毒性(尤其是顺铂)、神经毒性和重度、持续的骨髓抑制。需充分水化、预防性使用G-CSF |
| FLT3突变阳性AML合并VEGF高表达的实体瘤(如肾癌) | 多靶点TKI(如索拉非尼) | 探索性应用: 在标准AML诱导化疗(如“7+3”方案)基础上,联合FLT3抑制剂(如吉瑞替尼)。若患者合并晚期肾癌,也可考虑使用索拉非尼或舒尼替尼这类多靶点TKI,它们既能抑制FLT3,也具有抗血管生成(抑制VEGFR)作用 | 此为非常规策略,仅限于MDT充分论证且患者无标准治疗选择时考虑,最好在临床试验框架下进行。需严密监测药物相互作用、心脏毒性、高血压和手足综合征 |
Tab. 6
Summary of the Content of Expert Consensus on the Diagnosis and Treatment of Hematologic Malignancies with Solid Tumors (2025 version)"
| 共识内容 | 证据级别 | 推荐强度 |
|---|---|---|
| 诊断与鉴别诊断 | ||
| 推荐意见1:确诊HM-ST的核心标准是,必须通过病理学检查(含免疫组织化学检测)和必要的分子生物学检测(如NGS),证实存在两种组织学来源不同的独立原发恶性肿瘤 | 高 | 强 |
| 推荐意见2:HM-ST的诊断流程应采用多维模式,起始于详细的临床评估,影像学检查推荐以18F-FDG PET/CT作为基础全身筛查手段,并根据情况辅以局部精查或靶向分子探针PET | 中 | 强 |
| 推荐意见3:最终确诊HM-ST必须依赖充分的病理学检查,包括活组织病理学检查、H-E染色和针对性的免疫组织化学检测标志物组合。疑难病例推荐进行NGS分子检测辅助鉴别 | 高 | 强 |
| 治疗原则 | ||
| 推荐意见4:HM-ST患者的治疗决策应在MDT框架下进行,整合多学科专家意见,全面评估 | 中 | 强 |
| 推荐意见5:治疗优先级的确定应基于对两种肿瘤侵袭性、对生命威胁程度等的综合评估,通常优先处理威胁更大者 | 低 | 强 |
| 推荐意见6:治疗方案的选择需严格遵循功能保留和减少毒性叠加的原则,推荐采用现代精细化放疗技术 | 中 | 强 |
| 推荐意见7:对于同时性HM-ST,推荐MDT评估后决定采取序贯治疗或同步治疗,治疗中需密切监测毒性并个体化调整 | 中 | 强 |
| 推荐意见8:对于异时性HM-ST,治疗决策需充分考虑首发肿瘤类型及既往治疗史,谨慎选择方案以避免毒性累加 | 中 | 强 |
| 推荐意见9:建议MDT评估“异病同治”的可能性,个体化选择药物,并警惕相关风险。新兴疗法主要限于临床试验 | 中 | 一般 |
| 随访与管理 | ||
| 推荐意见10:推荐对HM-ST患者进行长期、规律的随访,内容应包括临床、实验室、影像学及必要的分子监测 | 中 | 强 |
| 推荐意见11:随访期间应密切监测并积极管理治疗相关毒性,并根据患者情况采取必要的感染预防措施 | 高 | 强 |
| [1] | COPUR M S, MANAPURAM S. Multiple primary tumors over a lifetime[J]. Oncology, 2019, 33(7): 629384. |
| [2] |
HU Z, LI Z, MA Z C, et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases[J]. Nat Genet, 2020, 52(7): 701-708.
doi: 10.1038/s41588-020-0628-z pmid: 32424352 |
| [3] |
ZHENG B, HE J, HU W Q, et al. The role of clonal hematopoiesis of indeterminate potential in non-hematological malignancies of various origins[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880(5): 189442.
doi: 10.1016/j.bbcan.2025.189442 |
| [4] |
REED S C, CROESSMANN S, PARK B H. CHIP happens: clonal hematopoiesis of indeterminate potential and its relationship to solid tumors[J]. Clin Cancer Res, 2023, 29(8): 1403-1411.
doi: 10.1158/1078-0432.CCR-22-2598 |
| [5] |
ASADA K, KANEKO S, TAKASAWA K, et al. Integrated analysis of whole genome and epigenome data using machine learning technology: toward the establishment of precision oncology[J]. Front Oncol, 2021, 11: 666937.
doi: 10.3389/fonc.2021.666937 |
| [6] |
ASADA K, TAKASAWA K, MACHINO H, et al. Single-cell analysis using machine learning techniques and its application to medical research[J]. Biomedicines, 2021, 9(11): 1513.
doi: 10.3390/biomedicines9111513 |
| [7] | 中国抗癌协会多原发和不明原发肿瘤整合康复专业委员会, 陕西省抗癌协会罕见肿瘤专业委员会. 多原发肿瘤诊治中国专家共识(2024版)[J]. 中华消化外科杂志, 2024, 23(10): 1261-1276. |
| Chinese Anti-Cancer Association Integrated Rehabilitation Committee for Multiple Primary and Unknown Primary Tumors, Shaanxi Provincial Anti-Cancer Association Rare Tumor Professional Committee. China expert consensus on diagnosis and treatment of multiple primary tumors (2024 edition)[J]. Chin J Dig Surg, 2024, 23(10): 1261-1276. | |
| [8] |
HUANG J J, PANG W S, LOK V, et al. Incidence, mortality, risk factors, and trends for Hodgkin lymphoma: a global data analysis[J]. J Hematol Oncol, 2022, 15(1): 57.
doi: 10.1186/s13045-022-01281-9 |
| [9] | ISLAMI F, MARLOW E C, THOMSON B, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, 2019[J]. CA A Cancer J Clin, 2024, 74(5): 405-432. |
| [10] |
SEREMIDI K, KLOUKOS D, POLYCHRONOPOULOU A, et al. Late effects of chemo and radiation treatment on dental structures of childhood cancer survivors. A systematic review and meta-analysis[J]. Head Neck, 2019, 41(9): 3422-3433.
doi: 10.1002/hed.v41.9 |
| [11] |
JAISWAL S, NATARAJAN P, SILVER A J, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease[J]. N Engl J Med, 2017, 377(2): 111-121.
doi: 10.1056/NEJMoa1701719 |
| [12] |
MORTON L M, SWERDLOW A J, SCHAAPVELD M, et al. Current knowledge and future research directions in treatment-related second primary malignancies[J]. EJC Suppl, 2014, 12(1):5-17.
doi: 10.1016/j.ejcsup.2014.05.001 pmid: 26217162 |
| [13] | OVERHOLSER L, SHAGISULTANOVA E, RABINOVITCH R A, et al. Breast cancer following radiation for Hodgkin lymphoma: clinical scenarios and risk-reducing strategies[J]. Oncology, 2016, 30(12): 1063-1070. |
| [14] |
ANAND K, ENSOR J, PINGALI S R, et al. T-cell lymphoma secondary to checkpoint inhibitor therapy[J]. J Immunother Cancer, 2020, 8(1): e000104.
doi: 10.1136/jitc-2019-000104 |
| [15] |
CAPPELL K M, KOCHENDERFER J N. Long-term outcomes following CAR T cell therapy: what we know so far[J]. Nat Rev Clin Oncol, 2023, 20(6): 359-371.
doi: 10.1038/s41571-023-00754-1 pmid: 37055515 |
| [16] |
CAPPELL K M, SHERRY R M, YANG J C, et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy[J]. J Clin Oncol, 2020, 38(32): 3805-3815.
doi: 10.1200/JCO.20.01467 pmid: 33021872 |
| [17] |
CHONG E A, RUELLA M, SCHUSTER S J. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy[J]. N Engl J Med, 2021, 384(7): 673-674.
doi: 10.1056/NEJMc2030164 |
| [18] |
PALUMBO A, BRINGHEN S, KUMAR S K, et al. Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data[J]. Lancet Oncol, 2014, 15(3): 333-342.
doi: 10.1016/S1470-2045(13)70609-0 pmid: 24525202 |
| [19] |
HJALGRIM H, EKSTRÖM-SMEDBY K, ROSTGAARD K, et al. Cigarette smoking and risk of Hodgkin lymphoma: a population-based case-control study[J]. Cancer Epidemiol Biomarkers Prev, 2007, 16(8): 1561-1566.
doi: 10.1158/1055-9965.EPI-07-0094 |
| [20] |
HIDAYAT K, LI H J, SHI B M. Anthropometric factors and non-Hodgkin’s lymphoma risk: systematic review and meta-analysis of prospective studies[J]. Crit Rev Oncol Hematol, 2018, 129: 113-123.
doi: 10.1016/j.critrevonc.2018.05.018 |
| [21] |
BAKKALCI D, JIA Y M, WINTER J R, et al. Risk factors for Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence[J]. J Glob Health, 2020, 10: 010405.
doi: 10.7189/jogh.10.010405 |
| [22] |
ZHANG Q, YIM R, LEE P, et al. Implications of clonal hematopoiesis in hematological and non-hematological disorders[J]. Cancers, 2024, 16(23): 4118.
doi: 10.3390/cancers16234118 |
| [23] |
VENINGA A, DE SIMONE I, HEEMSKERK J W M, et al. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding[J]. Haematologica, 2020, 105(8): 2020-2031.
doi: 10.3324/haematol.2019.235994 pmid: 32554558 |
| [24] |
KUSNE Y, XIE Z E, PATNAIK M M. Clonal hematopoiesis: molecular and clinical implications[J]. Leuk Res, 2022, 113: 106787.
doi: 10.1016/j.leukres.2022.106787 |
| [25] |
WEEKS L D, EBERT B L. Causes and consequences of clonal hematopoiesis[J]. Blood, 2023, 142(26): 2235-2246.
doi: 10.1182/blood.2023022222 pmid: 37931207 |
| [26] |
MALCIKOVA J, STANO-KOZUBIK K, TICHY B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia[J]. Leukemia, 2015, 29(4): 877-885.
doi: 10.1038/leu.2014.297 pmid: 25287991 |
| [27] |
GERSTUNG M, JOLLY C, LESHCHINER I, et al. The evolutionary history of 2 658 cancers[J]. Nature, 2020, 578: 122-128.
doi: 10.1038/s41586-019-1907-7 |
| [28] |
ZHANG Q, AI Y, ABDEL-WAHAB O. Molecular impact of mutations in RNA splicing factors in cancer[J]. Mol Cell, 2024, 84(19): 3667-3680.
doi: 10.1016/j.molcel.2024.07.019 pmid: 39146933 |
| [29] |
BLAND P, SAVILLE H, WAI P T, et al. SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response[J]. Nat Genet, 2023, 55(8): 1311-1323.
doi: 10.1038/s41588-023-01460-5 |
| [30] |
BESSA C, MATOS P, JORDAN P, et al. Alternative splicing: expanding the landscape of cancer biomarkers and therapeutics[J]. Int J Mol Sci, 2020, 21(23): 9032.
doi: 10.3390/ijms21239032 |
| [31] |
VAUPEL P, SCHMIDBERGER H, MAYER A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression[J]. Int J Radiat Biol, 2019, 95(7): 912-919.
doi: 10.1080/09553002.2019.1589653 pmid: 30822194 |
| [32] |
KAPOR S, SANTIBANEZ J F. Myeloid-derived suppressor cells and mesenchymal stem/stromal cells in myeloid malignancies[J]. J Clin Med, 2021, 10(13): 2788.
doi: 10.3390/jcm10132788 |
| [33] |
SHI H H, LI K, NI Y H, et al. Myeloid-derived suppressor cells: implications in the resistance of malignant tumors to T cell-based immunotherapy[J]. Front Cell Dev Biol, 2021, 9: 707198.
doi: 10.3389/fcell.2021.707198 |
| [34] |
SARVARIA A, MADRIGAL J A, SAUDEMONT A. B cell regulation in cancer and anti-tumor immunity[J]. Cell Mol Immunol, 2017, 14(8): 662-674.
doi: 10.1038/cmi.2017.35 pmid: 28626234 |
| [35] |
FAN R, DE BEULE N, MAES A, et al. The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers[J]. Front Immunol, 2022, 13: 1016059.
doi: 10.3389/fimmu.2022.1016059 |
| [36] |
FENDLER W P, CALAIS J, EIBER M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial[J]. JAMA Oncol, 2019, 5(6): 856-863.
doi: 10.1001/jamaoncol.2019.0096 |
| [37] |
KESSLER L, FERDINANDUS J, HIRMAS N, et al. 68Ga-FAPI as a diagnostic tool in sarcoma: data from the 68Ga-FAPI PET prospective observational trial[J]. J Nucl Med, 2022, 63(1): 89-95.
doi: 10.2967/jnumed.121.262096 |
| [38] |
SANLI Y, GARG I, KANDATHIL A, et al. Neuroendocrine tumor diagnosis and management: 68Ga-DOTATATE PET/CT[J]. AJR Am J Roentgenol, 2018, 211(2): 267-277.
doi: 10.2214/AJR.18.19881 |
| [39] |
LINDENBERG L, AHLMAN M, LIN F, et al. Advances in PET imaging of the CXCR4 receptor: [(68)Ga] Ga-PentixaFor[J]. Semin Nucl Med, 2024, 54(1): 163-170.
doi: 10.1053/j.semnuclmed.2023.09.002 |
| [40] |
PARIHAR A S, WAHL R L, JAHROMI A H. 68Ga-DOTATATE and 18F-FDG PET/CT in a rapidly progressing lymphoma[J]. Clin Nucl Med, 2025, 50(1): e64-e65.
doi: 10.1097/RLU.0000000000005450 |
| [41] | Cyclophosphamide. LiverTox. Clinical and research information on drug-induced liver injury[DB]. Bethesda (MD), 2012. |
| [42] | Ifosfamide. LiverTox. Clinical and research information on drug-induced liver injury[DB]. Bethesda (MD), 2012. |
| [43] |
MATTIOLI R, ILARI A, COLOTTI B, et al. Doxorubicin and other anthracyclines in cancers: activity, chemoresistance and its overcoming[J]. Mol Aspects Med, 2023, 93: 101205.
doi: 10.1016/j.mam.2023.101205 |
| [44] |
BRYAN L J, CASULO C, ALLEN P B, et al. Pembrolizumab added to ifosfamide, carboplatin, and etoposide chemotherapy for relapsed or refractory classic Hodgkin lymphoma: a multi-institutional phase 2 investigator-initiated nonrandomized clinical trial[J]. JAMA Oncol, 2023, 9(5): 683-691.
doi: 10.1001/jamaoncol.2022.7975 pmid: 36928527 |
| [45] |
DUNLEAVY K, FANALE M A, ABRAMSON J S, et al. Dose-adjusted EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) in untreated aggressive diffuse large B-cell lymphoma with MYC rearrangement: a prospective, multicentre, single-arm phase 2 study[J]. Lancet Haematol, 2018, 5(12): e609-e617.
doi: 10.1016/S2352-3026(18)30177-7 |
| [46] |
SCORDO M, WANG T P, AHN K W, et al. Outcomes associated with thiotepa-based conditioning in patients with primary central nervous system lymphoma after autologous hematopoietic cell transplant[J]. JAMA Oncol, 2021, 7(7): 993-1003.
doi: 10.1001/jamaoncol.2021.1074 pmid: 33956047 |
| [47] | Thiotepa. LiverTox. Clinical and research information on drug-induced liver injury[DB]. Bethesda (MD), 2012. |
| [48] |
JALILI-NIK M, SOLTANI A, MASHKANI B, et al. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell leukemia/lymphoma[J]. Int Immunopharmacol, 2021, 98: 107870.
doi: 10.1016/j.intimp.2021.107870 |
| [49] |
KELLY C M, GUTIERREZ SAINZ L, CHI P. The management of metastatic GIST: current standard and investigational therapeutics[J]. J Hematol Oncol, 2021, 14(1): 2.
doi: 10.1186/s13045-020-01026-6 |
| [50] | GAO Y, HE H X, LI X P, et al. Sintilimab (anti-PD-1 antibody) plus chidamide (histone deacetylase inhibitor) in relapsed or refractory extranodal natural killer T-cell lymphoma (SCENT): a phase Ⅰb/Ⅱ study[J]. Signal Transduct Target Ther, 2024, 9(1): 121. |
| [51] |
WANG F, JIN Y, WANG M, et al. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial[J]. Nat Med, 2024, 30(4): 1035-1043.
doi: 10.1038/s41591-024-02813-1 pmid: 38438735 |
| [52] |
ZHANG Q Y, WANG T, GENG C Z, et al. Exploratory clinical study of chidamide, an oral subtype-selective histone deacetylase inhibitor, in combination with exemestane in hormone receptor-positive advanced breast cancer[J]. Chin J Cancer Res, 2018, 30(6): 605-612.
doi: 10.21147/j.issn.1000-9604.2018.06.05 |
| [53] |
RIA R, MELACCIO A, RACANELLI V, et al. Anti-VEGF drugs in the treatment of multiple myeloma patients[J]. J Clin Med, 2020, 9(6): 1765.
doi: 10.3390/jcm9061765 |
| [54] |
PADELLA A, GHELLI LUSERNA DI RORÀ A, MARCONI G, et al. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies[J]. J Hematol Oncol, 2022, 15(1): 10.
doi: 10.1186/s13045-022-01228-0 |
| [55] |
JIANG B S, WANG E S, DONOVAN K A, et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6[J]. Angew Chem Int Ed, 2019, 58(19): 6321-6326.
doi: 10.1002/anie.201901336 pmid: 30802347 |
| [56] |
YANG M J, TANG X, ZHANG Z L, et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors[J]. Theranostics, 2020, 10(17): 7622-7634.
doi: 10.7150/thno.43991 pmid: 32685008 |
| [57] |
DENG W H, CHEN P P, LEI W, et al. CD70-targeting CAR-T cells have potential activity against CD19-negative B-cell lymphoma[J]. Cancer Commun, 2021, 41(9): 925-929.
doi: 10.1002/cac2.v41.9 |
| [58] |
XIE Z E, ZEIDAN A M. CHIPing away the progression potential of CHIP: a new reality in the making[J]. Blood Rev, 2023, 58: 101001.
doi: 10.1016/j.blre.2022.101001 |
| [59] |
QIU J Y, SHENG D D, LIN F, et al. The efficacy and safety of trilaciclib in preventing chemotherapy-induced myelosuppression: a systematic review and meta-analysis of randomized controlled trials[J]. Front Pharmacol, 2023, 14: 1157251.
doi: 10.3389/fphar.2023.1157251 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd