中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (4): 343-350.doi: 10.19401/j.cnki.1007-3639.2022.04.007
收稿日期:
2021-10-08
修回日期:
2022-01-02
出版日期:
2022-04-30
发布日期:
2022-05-07
通信作者:
侯润萍,傅小龙
E-mail:781593153@qq.com;xlfu1964@hotmail.com
作者简介:
傅圆圆(ORCID:0000-0001-5373-9528),博士研究生在读 E-mail: 781593153@qq.com
基金资助:
FU Yuanyuan1()(), HOU Runping2, FU Xiaolong1()()
Received:
2021-10-08
Revised:
2022-01-02
Published:
2022-04-30
Online:
2022-05-07
Contact:
HOU Runping, FU Xiaolong
E-mail:781593153@qq.com;xlfu1964@hotmail.com
摘要:
非小细胞肺癌(non-small cell lung cancer,NSCLC)占肺癌的80%~85%,是严重危害人类健康的恶性肿瘤之一。早期NSCLC治疗以手术切除或立体定向放疗等为主,确诊时是否存在淋巴道转移将会影响到局部治疗方法选择,局部治疗完成后是否还存在淋巴道和血道转移风险将成为辅助治疗精准决策的依据。如何预测NSCLC的淋巴道或血道转移风险,仍是一个难题。随着肿瘤发生、发展的演进及治疗的可塑性,肿瘤在时间、空间上生物学特性的异质性严重影响临床诊断、治疗及预后预测的精准性。正是受限于肿瘤的异质性,目前作为金标准的侵入性活检难以反映肿瘤生物学特性的全貌。基于医学图像的肿瘤生物学特性识别方法经历了从人工肉眼定性分析到手动提取影像学特征利用高级统计方法建模,再到影像组学和深度学习模型的发展,使精准高效的医学影像学分析成为可能。本文基于胸部CT影像,从影像组学和深度学习角度综述了影响早期NSCLC治疗决策的重要影响因素,聚焦于淋巴道和血道转移风险预测的研究进展。
中图分类号:
傅圆圆, 侯润萍, 傅小龙. 基于胸部CT预测早期非小细胞肺癌淋巴道或血道转移风险的研究进展[J]. 中国癌症杂志, 2022, 32(4): 343-350.
FU Yuanyuan, HOU Runping, FU Xiaolong. Research progress in predicting the risk of lymphatic or hematologic metastasis based on chest CT in early non-small cell lung cancer[J]. China Oncology, 2022, 32(4): 343-350.
[1] |
SUNG H,, FERLAY J,, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[2] |
HERBST R S,, MORGENSZTERN D,, BOSHOFF C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454.
doi: 10.1038/nature25183 |
[3] | 中华医学会, 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2018版)[J]. 肿瘤研究与临床, 2018, 30(12): 793-824. |
Chinese Medical Association, Oncology Branch of Chinese Medical Association, Journal of Chinese Medical Association. Chinese Medical Association guidelines for clinical diagnosis and treatment of lung cancer (Edition 2018)[J]. Cancer Res Clin, 2018, 30(12): 793-824. | |
[4] |
SENFT D,, LEISERSON M D M,, RUPPIN E, et al. Precision oncology: the road ahead[J]. Trends Mol Med, 2017, 23(10): 874-898.
doi: 10.1016/j.molmed.2017.08.003 |
[5] |
GUO D W,, NI Y M,, LV X Y, et al. Distribution and prognosis of mediastinal lymph node metastases of nonsmall cell lung cancer[J]. J Cancer Res Ther, 2016, 12(Supplement): 120-125.
doi: 10.4103/0973-1482.191613 |
[6] |
GHANEM S,, EL BITAR S,, HOSSRI S, et al. What we know about surgical therapy in early-stage non-small cell lung cancer: a guide for the medical oncologist[J]. Cancer Manag Res, 2017, 9: 267-278.
doi: 10.2147/CMAR.S139253 |
[7] |
SAGAWA M,, OIZUMI H,, SUZUKI H, et al. A prospective 5-year follow-up study after limited resection for lung cancer with ground-glass opacity[J]. Eur J Cardiothorac Surg, 2018, 53(4): 849-856.
doi: 10.1093/ejcts/ezx418 |
[8] |
HARUKI T,, AOKAGE K,, MIYOSHI T, et al. Mediastinal nodal involvement in patients with clinical stage Ⅰ non-small cell lung cancer: possibility of rational lymph node dissection[J]. J Thorac Oncol, 2015, 10(6): 930-936.
doi: 10.1097/JTO.0000000000000546 |
[9] | SILVESTRI G A,, GONZALEZ A V,, JANTZ M A, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd Ed: American College of Chest Physicians evidence-based clinical practice guidelines[J]. Chest, 2013, 143(5 Suppl): e211S-e250S. |
[10] |
ZHANG Y J,, LI J B,, DUAN Y L, et al. Comparison of biological target volume metrics based on FDG PET/CT and 4D-CT for primary non-small cell lung cancer[J]. Oncotarget, 2017, 8(45): 79629-79635.
doi: 10.18632/oncotarget.18917 |
[11] |
PAK K,, PARK S,, CHEON G J, et al. Update on nodal staging in non-small cell lung cancer with integrated positron emission tomography/computed tomography: a meta-analysis[J]. Ann Nucl Med, 2015, 29(5): 409-419.
doi: 10.1007/s12149-015-0958-6 |
[12] |
DE LEYN P,, DOOMS C,, KUZDZAL J, et al. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer[J]. Eur J Cardiothorac Surg, 2014, 45(5): 787-798.
doi: 10.1093/ejcts/ezu028 |
[13] |
MEHLEN P,, PUISIEUX A. Metastasis: a question of life or death[J]. Nat Rev Cancer, 2006, 6(6): 449-458.
doi: 10.1038/nrc1886 |
[14] | WAGNER H Jr. Postoperative adjuvant therapy for patients with resected non-small cell lung cancer: still controversial after all these years[J]. Chest, 2000, 117(4 Suppl 1): 110S-118S. |
[15] |
CHETTY I J,, DEVPURA S,, LIU D Z, et al. Correlation of dose computed using different algorithms with local control following stereotactic ablative radiotherapy (SABR)-based treatment of non-small cell lung cancer[J]. Radiother Oncol, 2013, 109(3): 498-504.
doi: 10.1016/j.radonc.2013.10.012 |
[16] |
ZHOU Z G,, FOLKERT M,, IYENGAR P, et al. Multi-objective radiomics model for predicting distant failure in lung SBRT[J]. Phys Med Biol, 2017, 62(11): 4460-4478.
doi: 10.1088/1361-6560/aa6ae5 |
[17] |
DETTERBECK F C,, BOFFA D J,, KIM A W, et al. The eighth edition lung cancer stage classification[J]. Chest, 2017, 151(1): 193-203.
doi: 10.1016/j.chest.2016.10.010 |
[18] | ZHANG C Y,, PANG G C,, MA C X, et al. Preoperative risk assessment of lymph node metastasis in cT1 lung cancer: a retrospective study from Eastern China[J]. J Immunol Res, 2019, 2019: 6263249. |
[19] |
MEI X Y,, WANG R,, YANG W J, et al. Predicting malignancy of pulmonary ground-glass nodules and their invasiveness by random forest[J]. J Thorac Dis, 2018, 10(1): 458-463.
doi: 10.21037/jtd.2018.01.88 |
[20] |
LAMBIN P,, RIOS-VELAZQUEZ E,, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
doi: 10.1016/j.ejca.2011.11.036 |
[21] |
KUMAR V,, GU Y H,, BASU S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
doi: 10.1016/j.mri.2012.06.010 |
[22] |
AERTS H J,, VELAZQUEZ E R,, LEIJENAAR R T, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006.
doi: 10.1038/ncomms5006 |
[23] |
LEE G,, PARK H,, BAK S H, et al. Radiomics in lung cancer from basic to advanced: Current status and future directions[J]. Korean J Radiol, 2020, 21(2): 159-171.
doi: 10.3348/kjr.2019.0630 |
[24] |
AERTS H J W L. The potential of radiomic-based phenotyping in precision medicine: a review[J]. JAMA Oncol, 2016, 2(12): 1636-1642.
doi: 10.1001/jamaoncol.2016.2631 |
[25] |
ALZUBAIDI L,, ZHANG J L,, HUMAIDI A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. J Big Data, 2021, 8(1): 53.
doi: 10.1186/s40537-021-00444-8 |
[26] |
LECUN Y,, BENGIO Y,, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[27] |
LIU Y,, KIM J,, BALAGURUNATHAN Y, et al. Prediction of pathological nodal involvement by CT-based radiomic features of the primary tumor in patients with clinically node-negative peripheral lung adenocarcinomas[J]. Med Phys, 2018, 45(6): 2518-2526.
doi: 10.1002/mp.12901 |
[28] | HE L,, HUANG Y Q,, YAN L X, et al. Radiomics-based predictive risk score: a scoring system for preoperatively predicting risk of lymph node metastasis in patients with resectable non-small cell lung cancer[J]. Chung Kuo Yen Cheng Yen Chiu, 2019, 31(4): 641-652. |
[29] |
YANG M L,, SHE Y L,, DENG J J, et al. CT-based radiomics signature for the stratification of N2 disease risk in clinical stage I lung adenocarcinoma[J]. Transl Lung Cancer Res, 2019, 8(6): 876-885.
doi: 10.21037/tlcr.2019.11.18 |
[30] |
ZHONG Y,, YUAN M,, ZHANG T, et al. Radiomics approach to prediction of occult mediastinal lymph node metastasis of lung adenocarcinoma[J]. AJR Am J Roentgenol, 2018, 211(1): 109-113.
doi: 10.2214/AJR.17.19074 |
[31] |
WANG X,, ZHAO X Y,, LI Q, et al. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?[J]. Eur Radiol, 2019, 29(11): 6049-6058.
doi: 10.1007/s00330-019-06084-0 |
[32] |
DAS S K,, FANG K W,, XU L, et al. Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas[J]. Sci Rep, 2021, 11(1): 10829.
doi: 10.1038/s41598-021-90367-4 |
[33] | YANG X G,, PAN X H,, LIU H, et al. A new approach to predict lymph node metastasis in solid lung adenocarcinoma: a radiomics nomogram[J]. J Thorac Dis, 2018, 10(Suppl 7): S807-S819. |
[34] |
CONG M D,, FENG H,, REN J L, et al. Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage ⅠA non-small cell lung cancer[J]. Lung Cancer, 2020, 139: 73-79.
doi: 10.1016/j.lungcan.2019.11.003 |
[35] |
LI Q,, HE X Q,, FAN X, et al. Development and validation of a combined model for preoperative prediction of lymph node metastasis in peripheral lung adenocarcinoma[J]. Front Oncol, 2021, 11: 675877.
doi: 10.3389/fonc.2021.675877 |
[36] |
ZHAO X Y,, WANG X,, XIA W, et al. A cross-modal 3D deep learning for accurate lymph node metastasis prediction in clinical stage T1 lung adenocarcinoma[J]. Lung Cancer, 2020, 145: 10-17.
doi: 10.1016/j.lungcan.2020.04.014 |
[37] |
WANG Y W,, CHEN C J,, HUANG H C, et al. Dual energy CT image prediction on primary tumor of lung cancer for nodal metastasis using deep learning[J]. Comput Med Imaging Graph, 2021, 91: 101935.
doi: 10.1016/j.compmedimag.2021.101935 |
[38] |
BAYANATI H,, E THORNHILL R,, SOUZA C A, et al. Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer?[J]. Eur Radiol, 2015, 25(2): 480-487.
doi: 10.1007/s00330-014-3420-6 |
[39] |
ANDERSEN M B,, HARDERS S W,, GANESHAN B, et al. CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer[J]. Acta Radiol, 2016, 57(6): 669-676.
doi: 10.1177/0284185115598808 |
[40] |
DONG M S,, HOU G,, LI S, et al. Preoperatively estimating the malignant potential of mediastinal lymph nodes: a pilot study toward establishing a robust radiomics model based on contrast-enhanced CT imaging[J]. Front Oncol, 2020, 10: 558428.
doi: 10.3389/fonc.2020.558428 |
[41] | 沙雪,, 巩贯忠,, 仇清涛, 等. 基于CT影像组学鉴别非小细胞肺癌纵隔转移性淋巴结的模型研究[J]. 中华放射医学与防护杂志, 2020, 40(2): 150-155. |
SHA X,, GONG G Z,, QIU Q T, et al. Model study of mediastinal metastatic lymph nodes in non-small cell lung cancer based on CT imaging[J]. Chin J Radiat Med Protect, 2020, 40 (2): 150-155. | |
[42] |
SHIN H C,, ROTH H R,, GAO M C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298.
doi: 10.1109/TMI.2016.2528162 |
[43] |
YU W,, TANG C,, HOBBS B P, et al. Development and validation of a predictive radiomics model for clinical outcomes in stage Ⅰ non-small cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1090-1097.
doi: 10.1016/j.ijrobp.2017.10.046 |
[44] |
HUYNH E,, COROLLER T P,, NARAYAN V, et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer[J]. Radiother Oncol, 2016, 120(2): 258-266.
doi: 10.1016/j.radonc.2016.05.024 |
[45] |
OIKONOMOU A,, KHALVATI F,, TYRRELL P N, et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy[J]. Sci Rep, 2018, 8(1): 4003.
doi: 10.1038/s41598-018-22357-y |
[46] |
XU Y W,, HOSNY A,, ZELEZNIK R, et al. Deep learning predicts lung cancer treatment response from serial medical imaging[J]. Clin Cancer Res, 2019, 25(11): 3266-3275.
doi: 10.1158/1078-0432.CCR-18-2495 |
[47] |
TAU N,, STUNDZIA A,, YASUFUKU K, et al. Convolutional neural networks in predicting nodal and distant metastatic potential of newly diagnosed non-small cell lung cancer on FDG PET images[J]. AJR Am J Roentgenol, 2020, 215(1): 192-197.
doi: 10.2214/AJR.19.22346 |
[48] |
LIU X X,, CRUZ RIVERA S,, MOHER D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension[J]. Nat Med, 2020, 26(9): 1364-1374.
doi: 10.1038/s41591-020-1034-x |
[49] | WEI Z Q,, WANG Y B,, TAO X, et al. Sparse-view CT image restoration via multiscale wavelet residual network[J]. J South Med Univ, 2019, 39(11): 1320-1328. |
[50] |
WU W W,, HU D L,, NIU C, et al. Deep learning based spectral CT imaging[J]. Neural Netw, 2021, 144: 342-358.
doi: 10.1016/j.neunet.2021.08.026 |
[51] |
HAN Y,, YE J C. Framing U-net via deep convolutional framelets: application to sparse-view CT[J]. IEEE Trans Med Imaging, 2018, 37(6): 1418-1429.
doi: 10.1109/TMI.2018.2823768 |
[52] |
LEE M,, KIM H,, KIM H J. Sparse-view CT reconstruction based on multi-level wavelet convolution neural network[J]. Phys Med, 2020, 80: 352-362.
doi: 10.1016/j.ejmp.2020.11.021 |
[53] | 施俊,, 汪琳琳,, 王珊珊, 等. 深度学习在医学影像中的应用综述[J]. 中国图象图形学报, 2020, 25(10): 1953-1981. |
SHI J,, WANG L L,, WANG S S, et al. Applications of deep learning in medical imaging: a survey[J]. J Image Graph, 2020, 25(10): 1953-1981. | |
[54] |
AERTS H J,, GROSSMANN P,, TAN Y Q, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC[J]. Sci Rep, 2016, 6: 33860.
doi: 10.1038/srep33860 |
[55] |
FUJITA H. AI-based computer-aided diagnosis (AI-CAD): The latest review to read first[J]. Radiol Phys Technol, 2020, 13(1): 6-19.
doi: 10.1007/s12194-019-00552-4 |
[1] | 朱逸晖, 李 婷, 胡夕春. Trastuzumab deruxtecan的临床研究进展及展望——HER2耐药患者的新希望[J]. 中国癌症杂志, 2021, 31(8): 754-761. |
[2] | 李海洲, 张艳炜, 许英杰, 杨 门, 张 磊, 韩京军 . miR-933调控KLF6基因影响非小细胞肺癌的作用研究[J]. 中国癌症杂志, 2021, 31(7): 581-588. |
[3] | 杨 佳, 刘舒媛, 王莹莹, 李盈甫, 马千里, 李 玙, 王永蓉, 李传印, 谭 芳 . 云南省汉族人群TNF-α基因多态性与非小细胞肺癌发生、发展的相关性[J]. 中国癌症杂志, 2021, 31(7): 616-628. |
[4] | 董诗洁, 胡晓欣, 王 葳, 杨 孟, 岳 磊, 童 彤, 顾雅佳. 基于多序列MRI与多体系影像组学模型预测子宫颈癌淋巴结转移的研究[J]. 中国癌症杂志, 2021, 31(6): 460-467. |
[5] | 义维丽, 赵文成, 黄东宁, 覃 莉, 吴新天, 周 斐, 吴凤英 . PD-1单抗治疗非小细胞肺癌相关不良反应及其与疗效的相关性分析[J]. 中国癌症杂志, 2021, 31(3): 203-211. |
[6] | 杨 鑫 , 章 真 . 基于深度学习的人工智能在数字病理学中的进展[J]. 中国癌症杂志, 2021, 31(2): 151-155. |
[7] | 赵媛媛, 周建英, 范 云, 王佳蕾, 黄鼎智, 李峻岭, 史美祺, 刘基巍, 姚 煜, 邬 麟, 姚文秀, 张 力 . BRAF V600突变型非小细胞肺癌的治疗进展[J]. 中国癌症杂志, 2021, 31(12): 1145-1152. |
[8] | 尤 超, 郑惠中, 姜婷婷, 简嘉豪, 范 明, 厉力华, 吴 炅, 顾雅佳, 彭卫军 . 基于影像组学对数字化乳腺断层摄影中肿块病变的鉴别诊断研究[J]. 中国癌症杂志, 2021, 31(12): 1162-1167. |
[9] | 申宇嘉, 傅小龙 . 非小细胞肺癌发生、发展过程中免疫微环境变化及其临床意义[J]. 中国癌症杂志, 2021, 31(11): 1115-1125. |
[10] | 何 夕, 焦晓栋, 臧远胜. 肿瘤突变负荷在EGFR突变型晚期非小细胞肺癌中的临床研究进展[J]. 中国癌症杂志, 2021, 31(1): 69-75. |
[11] | 鲁晓腾, 许 青. 基于CT影像特征的非小细胞肺癌复发相关性因素研究[J]. 中国癌症杂志, 2020, 30(8): 636-640. |
[12] | 张龙富, 姚家美, 蒋冬先, 侯英勇, 张 新 . BIM联合Scribble预测晚期非小细胞肺癌化疗效果[J]. 中国癌症杂志, 2020, 30(11): 865-871. |
[13] | 方瑜佳, 周 娟, 苏春霞. 非小细胞肺癌肝转移免疫微环境及未来干预策略[J]. 中国癌症杂志, 2020, 30(10): 750-758. |
[14] | 李 媛. 病理学指导下的非小细胞肺癌个体化免疫治疗[J]. 中国癌症杂志, 2020, 30(10): 770-776. |
[15] | 杨 光, 张 昆, 王 俊 . Prospero相关同源异形盒蛋白1在非小细胞肺癌中的表达及意义[J]. 中国癌症杂志, 2020, 30(10): 791-797. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn