[1] |
PECERO M L, SALVADOR-BOFILL J, MOLINA-PINELO S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer[J]. Cell Oncol (Dordr), 2019, 42(1): 1-12.
|
[2] |
YI Y, WU M, ZENG H, et al. Tumor-derived exosomal non-coding RNAs: the emerging mechanisms and potential clinical applications in breast cancer[J]. Front Oncol, 2021, 11: 738945.
|
[3] |
FIGUEROA J, PHILLIPS L M, SHAHAR T, et al. Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587[J]. Cancer Res, 2017, 77(21): 5808-5819.
doi: 10.1158/0008-5472.CAN-16-2524
pmid: 28855213
|
[4] |
马爽, 窦赫, 刘宇琪, 等. 外泌体miRNAs在乳腺癌肿瘤微环境中的研究进展[J]. 现代肿瘤医学, 2021, 29(18): 3295-3299.
|
|
MA S, DOU H, LIU Y Q, et al. Research progress of exosomal miRNAs in the tumor microenvironment of breast cancer[J]. J Mod Oncol, 2021, 29(18): 3295-3299.
|
[5] |
孙蓓丽, 王玉刚. 外泌体与胃癌关系的研究进展[J]. 胃肠病学, 2018, 23(11): 697-700.
|
|
SUN B L, WANG Y G. Advances in study on correlation of exosomes with gastric cancer[J]. Chin J Gastroenterol, 2018, 23(11): 697-700.
|
[6] |
宫伟, 吴霞, 马俊, 等. 外泌体在肿瘤干细胞维持和肿瘤发生与发展中的作用[J]. 实用肿瘤杂志, 2020, 35(1): 79-82.
|
|
GONG W, WU X, MA J, et al. The role of exosomes in cancer stem cell maintenance and tumor development[J]. J Pract Oncol, 2020, 35(1): 79-82.
|
[7] |
HUANG R, JIN X, GAO Y Y, et al. DZNep inhibits Hif-1α and Wnt signalling molecules to attenuate the proliferation and invasion of BGC-823 gastric cancer cells[J]. Oncol Lett, 2019, 18(4): 4308-4316.
doi: 10.3892/ol.2019.10769
pmid: 31579098
|
[8] |
吴贝, 李志英, 王俊杰. DZNep在肿瘤治疗中的研究进展[J]. 肿瘤, 2016, 36(8): 938-943.
|
|
WU B, LI Z Y, WANG J J. Research progress in DZNep in tumor therapy[J]. Tumor, 2016, 36(8): 938-943.
|
[9] |
GERGELY J E, DORSEY A E, DIMRI G P, et al. Timosaponin A-Ⅲ inhibits oncogenic phenotype via regulation of PcG protein BMI1 in breast cancer cells[J]. Mol Carcinog, 2018, 57(7): 831-841.
doi: 10.1002/mc.22804
|
[10] |
MARGUERON R, REINBERG D. The polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349.
doi: 10.1038/nature09784
|
[11] |
RIQUELME E, BEHRENS C, LIN H Y, et al. Modulation of EZH2 expression by MEK-ERK or PI3K-AKT signaling in lung cancer is dictated by different KRAS oncogene mutations[J]. Cancer Res, 2016, 76(3): 675-685.
doi: 10.1158/0008-5472.CAN-15-1141
pmid: 26676756
|
[12] |
JUNG H Y, JUN S, LEE M, et al. PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation[J]. Mol Cell, 2013, 52(2): 193-205.
doi: 10.1016/j.molcel.2013.08.028
|
[13] |
MOCHIZUKI D, MISAWA Y, KAWASAKI H, et al. Aberrant epigenetic regulation in head and neck cancer due to distinct EZH2 overexpression and DNA hypermethylation[J]. Int J Mol Sci, 2018, 19(12): E3707.
|
[14] |
YAO Y Z, HU H, YANG Y, et al. Downregulation of enhancer of zeste homolog 2 (EZH2) is essential for the Induction of autophagy and apoptosis in colorectal cancer cells[J]. Genes (Basel), 2016, 7(10): E83.
|
[15] |
WEI F Z, CAO Z Y, WANG X, et al. Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway[J]. Autophagy, 2015, 11(12): 2309-2322.
doi: 10.1080/15548627.2015.1117734
|
[16] |
王静如, 巢静波, 陆达伟, 等. 纳米颗粒跟踪分析仪用于二氧化钛纳米颗粒分散及检测[J]. 分析化学, 2021, 49(4): 538-545.
|
|
WANG J R, CHAO J B, LU D W, et al. Dispersion and detection of titanium dioxide nanoparticles based on nanoparticle tracking analysis[J]. Chin J Anal Chem, 2021, 49(4): 538-545.
|
[17] |
WANG F, GAO Y, LV Y, et al. Polycomb-like2 regulates PRC2 components to affect proliferation in glioma cells[J]. J Neurooncol, 2020, 148(2): 259-271.
doi: 10.1007/s11060-020-03538-0
|
[18] |
吴大平, 吴焕良, 郑文宏, 等. IL-6调控miR-204及Notch1促进乳腺癌细胞增殖、迁移和侵袭[J]. 现代免疫学, 2021, 41(5): 380-385.
|
|
WU D P, WU H L, ZHENG W H, et al. IL-6 promotes proliferation, migration and invasion of breast cancer cells by regulating miR-204 and Notch1[J]. Curr Immunol, 2021, 41(5): 380-385.
|
[19] |
KOSAKA N, IGUCHI H, HAGIWARA K, et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis[J]. J Biol Chem, 2013, 288(15): 10849-10859.
doi: 10.1074/jbc.M112.446831
pmid: 23439645
|
[20] |
苏建伟, 韦庆臣, 周喜汉. 肿瘤来源的外泌体在肿瘤微环境调控作用的研究进展[J]. 右江医学, 2016, 44(4): 456-458.
|
|
SU J W, WEI Q C, ZHOU X H. Progress in the regulation of tumor-derived exosomes in tumor microenvironment[J]. Chin Youjiang Med J, 2016, 44(4): 456-458.
|
[21] |
CREA F, FORNARO L, BOCCI G, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis[J]. Cancer Metastasis Rev, 2012, 31(3/4): 753-761.
doi: 10.1007/s10555-012-9387-3
|
[22] |
FERRARO A, BONI T, PINTZAS A. EZH2 regulates cofilin activity and colon cancer cell migration by targeting ITGA2 gene[J]. PLoS One, 2014, 9(12): e115276.
|
[23] |
CHENG L L, ITAHANA Y, LEI Z D, et al. TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep)[J]. Clin Cancer Res, 2012, 18(15): 4201-4212.
doi: 10.1158/1078-0432.CCR-12-0036
pmid: 22675170
|
[24] |
BRACKEN A P, PASINI D, CAPRA M, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer[J]. EMBO J, 2003, 22(20): 5323-5335.
pmid: 14532106
|
[25] |
CHU C S, LO P W, YEH Y H, et al. O-GlcNAcylation regulates EZH2 protein stability and function[J]. Proc Natl Acad Sci USA, 2014, 111(4): 1355-1360.
doi: 10.1073/pnas.1323226111
|
[26] |
MAHARA S, LEE P L, FENG M, et al. HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer[J]. Proc Natl Acad Sci U S A, 2016, 113(26): E3735-E3744.
|
[27] |
TAKAHASHI K, OTA Y, KOGURE T, et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer[J]. Cancer Sci, 2020, 111(1): 98-111.
doi: 10.1111/cas.14232
|
[28] |
NIETO M A, HUANG R Y J, JACKSON R A, et al. Emt: 2016[J]. Cell, 2016, 166(1): 21-45.
doi: 10.1016/j.cell.2016.06.028
pmid: 27368099
|
[29] |
戴京, 叶茂. 去泛素化酶在肿瘤上皮间质转化中的作用[J/OL]. 中国生物化学与分子生物学报: 1-12.
|
|
DAI J, YE M. The role of deubiquitinase in epithelial-mesenchymal transition of tumors[J/OL]. Chin J Biochem Mol Biol: 1-12.
|
[30] |
LAMOUILLE S, XU J, DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
doi: 10.1038/nrm3758
|
[31] |
史博, 朱俊玲, 张晋, 等. EZH2调节E-cadherin对胶质瘤细胞生物学行为影响的实验研究[J]. 临床肿瘤学杂志, 2021, 26(2): 117-121.
|
|
SHI B, ZHU J L, ZHANG J, et al. Effect of EZH2 on proliferation, invasion and migration of glioma cells through regulating E-cadherin[J]. Chin Clin Oncol, 2021, 26(2): 117-121.
|
[32] |
D’ANGELO V, IANNOTTA A, RAMAGLIA M, et al. EZH2 is increased in paediatric T-cell acute lymphoblastic leukemia and is a suitable molecular target in combination treatment approaches[J]. J Exp Clin Cancer Res, 2015, 34: 83.
doi: 10.1186/s13046-015-0191-0
|
[33] |
ZHOU X, ZANG X, GUAN Y, et al. Targeting enhancer of zeste homolog 2 protects against acute kidney injury[J]. Cell Death Dis, 2018, 9(11): 1067.
doi: 10.1038/s41419-018-1012-0
pmid: 30341286
|
[34] |
THIERY J P, ACLOQUE H, HUANG R Y J, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890.
doi: 10.1016/j.cell.2009.11.007
pmid: 19945376
|
[35] |
刘俊骥, 刘兰, 颜赞芳, 等. 细胞粘附蛋白、HER-2、ZO-1和VEGF与弥漫型胃癌侵袭转移的相关性研究[J]. 实用癌症杂志, 2019, 34(5): 714-717.
|
|
LIU J J, LIU L, YAN Z F, et al. Study on the relationship between HER-2ZO-1 and VEGF and invasion and metastasis of diffuse gastric carcinoma[J]. Pract J Cancer, 2019, 34(5): 714-717.
|
[36] |
李英彬, 孙圣荣. 水通道蛋白4在乳腺癌细胞侵袭转移中的作用[J]. 临床外科杂志, 2020, 28(1): 54-57.
|
|
LI Y B, SUN S R. Effect of aquaporin AQP4 in invasion and metastasis of breast cancer cells[J]. J Clin Surg, 2020, 28(1): 54-57.
|
[37] |
CHEN Q, BOIRE A, JIN X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604): 493-498.
doi: 10.1038/nature18268
|