中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (5): 388-396.doi: 10.19401/j.cnki.1007-3639.2022.05.003
收稿日期:
2022-03-25
修回日期:
2022-05-01
出版日期:
2022-05-30
发布日期:
2022-06-09
通信作者:
王卓颖
E-mail:517710910039@shsmu.edu.cn;zhuoyingwang@hotmail.com
作者简介:
邓姝婷(ORCID: 0000-0002-2894-5570),本科 E-mail: 517710910039@shsmu.edu.cn基金资助:
DENG Shuting()(), FENG Yuan, QIAN Kai, GUO Kai, WANG Zhuoying()()
Received:
2022-03-25
Revised:
2022-05-01
Published:
2022-05-30
Online:
2022-06-09
Contact:
WANG Zhuoying
E-mail:517710910039@shsmu.edu.cn;zhuoyingwang@hotmail.com
文章分享
摘要:
背景与目的: 甲状腺癌是世界范围内增长率较高的恶性肿瘤之一,在儿童及青少年中甲状腺癌的发病率也在逐年增加。本研究旨在对基因突变特征与儿童及青少年分化型甲状腺癌(differentiated thyroid carcinoma,DTC)远处转移的相关性进行meta分析。方法: 数据库搜索探究基因突变特征与儿童及青少年DTC远处转移相关性的研究,运用STATA 14.0软件分析与远处转移相关的基因突变特征。结果: 纳入20项研究,共涉及1 273例患者,分析结果显示,BRAF V600E突变阴性、RET基因融合阳性是儿童及青少年DTC远处转移的危险因素,而NTRK基因融合与远处转移未见明显相关性。结论: 本研究发现了与儿童及青少年DTC远处转移相关的几个基因突变特征,有利于患者预后的评估及治疗方案的制定。
中图分类号:
邓姝婷, 冯源, 钱凯, 郭凯, 王卓颖. 基因突变特征与儿童及青少年分化型甲状腺癌远处转移相关性的meta分析[J]. 中国癌症杂志, 2022, 32(5): 388-396.
DENG Shuting, FENG Yuan, QIAN Kai, GUO Kai, WANG Zhuoying. Meta-analysis of the association between gene alterations and distant metastasis of differentiated thyroid carcinoma in children and adolescents[J]. China Oncology, 2022, 32(5): 388-396.
表1
纳入文献基本信息"
Author | Published year | Country | Study period | Definition /year | Mean age (range) | Distant metastasis/total (%) | Surgical treatment (%) | RAI/% | Mean follow-up period t/year | Genetic events | Detection method | NOS quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sui[ | 2019 | China | 2005-2018 | ≤20 | 14.54±4.43 | 40/69 (57.8) | TT (100.0) | 100 | 2.7 | BRAF | NR | M |
Zhao[ | 2020 | China | 2007-2019 | ≤20 | NR | 10/77 (13.0) | NR | NR | NR | BRAF | DS | M |
Geng[ | 2019 | China | 2000-2015 | ≤14 | 7.05±1.65 | 6/39 (15.4) | NR | NR | NR | BRAF | DS | M |
Cordioli[ | 2016 | Brazil | 1993-2012 | ≤18 | 11.36±4.52 | 10/30 (33.3) | TT (100.0) | NR | NR | AGK-BRAF | RT-PCR | M |
Sisdelli[ | 2019 | Brazil | 1993-2017 | ≤18 | 12.64±4.08 | 24/80 (30.0) | TT (100.0) | NR | NR | AGK-BRAF | RT-PCR, FISH | M |
BRAF | DS | |||||||||||
Chakraborty[ | 2020 | India | 2005-2018 | ≤20 | 17.00 (14.0-19.0) | 17/95 (17.9) | TT (83.2) | 33.7 | 2.5 | BRAF | DS | M |
HT (16.8) | ||||||||||||
Givens[ | 2014 | America | 1999-2012 | ≤18 | 13.55±3.33 | 5/19 (26.3) | TT (100.0) | NR | NR | BRAF | Pyrosequencing | H |
Geng[ | 2018 | China | 1994-2014 | ≤18 | (3.6-13.8) | 7/48 (14.6) | TT (56.3) | NR | NR | BRAF | DS | M |
HT (43.7) | ||||||||||||
Onder[ | 2016 | Turkey | 1995-2015 | ≤18 | 14.74±3.36 | 5/50 (10.0) | TT (100.0) | 76.0 | 5.8 | BRAF | MASA-PCR | H |
Geng[ | 2019 | China | NR | ≤18 | NR | 7/48 (14.6) | TT (56.3) | NR | NR | TERT | DS | L |
HT (43.7) | ||||||||||||
Stosic[ | 2021 | Canada | NR | ≤18 | 12.80±2.90 | 11/52 (21.2) | NR | NR | NR | BRAF | MASA-PCR | H |
RET | q-PCR | |||||||||||
Franco[ | 2022 | America | 1989-2019 | ≤18 | 14.53±2.99 | 22/131 (16.8) | TT (100.0) | 65.6 | NR | RET | NGS | M |
NTRK | ||||||||||||
BRAF | ||||||||||||
RAS | ||||||||||||
Cordioli[ | 2017 | Brazil | NR | ≤18 | 11.80±4.48 | 13/35 (37.1) | TT (100.0) | NR | NR | BRAF | DS | H |
NTRK | RT-PCR | |||||||||||
AGK-BRAF | RT-PCR, FISH | |||||||||||
RET | RT-PCR | |||||||||||
Alzahrani[ | 2020 | Saudi | 2004-2019 | ≤18 | 17.00 (5.0-18.0) | 5/48(10.4) | TT (100.0) | 89.6 | 10.8 | BRAF | NGS | M |
RET | ||||||||||||
Potter[ | 2021 | America | 2005-2016 | ≤24 | NR | 10/36 (27.8) | NR | 94.0 | NR | BRAF | NGS | M |
RET | ||||||||||||
NTRK | ||||||||||||
Lee[ | 2021 | Korea | 1983-2020 | ≤20 | 14.30±3.80 | 20/106 (18.9) | NR | NR | 7.3 | RET | Various methods | M |
NTRK | ||||||||||||
ALK | ||||||||||||
BRAF | ||||||||||||
Pekova[ | 2020 | Czech | 2003-2019 | ≤20 | 14.50±3.40 | 10/93 (10.8) | TT (88.2) | 90.3 | 6.0 | RET | NGS,RT-PCR | M |
ST (11.8) | NTRK | |||||||||||
ALK | ||||||||||||
BRAF | ||||||||||||
Alzahrani[ | 2017 | Saudi | 1998-2015 | ≤18 | 15.50 (8.0-18.0) | 9/79 (11.4) | TT (100.0) | 92.4 | 5.4 | BRAF | DS | M |
Pekova[ | 2019 | Czech | 2003-2017 | ≤20 | 14.2±3.4 | 10/83 (12.0) | TT (86.7) | 86.7 | 6.0 | RET | RT-PCR | H |
HT (13.3) | BRAF | NGS | ||||||||||
Alzahrani[ | 2016 | Saudi | NR | ≤18 | 16.00 (9.0-18.0) | 8/55 (14.5) | TT (100.0) | 89 | NR | BRAF | DS | M |
[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clin, 2021, 71(1): 7-33.
doi: 10.3322/caac.21654 |
[2] |
HOGAN A R, YING Z G, PEREZ E A, et al. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients[J]. J Surg Res, 2009, 156(1): 167-172.
doi: 10.1016/j.jss.2009.03.098 |
[3] |
VERGAMINI L B, FRAZIER A L, ABRANTES F L, et al. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study[J]. J Pediatr, 2014, 164(6): 1481-1485.
doi: 10.1016/j.jpeds.2014.01.059 |
[4] | JARZAB B, HANDKIEWICZ-JUNAK D. Differentiated thyroid cancer in children and adults: same or distinct disease?[J]. Hormones (Athens), 2007, 6(3): 200-209. |
[5] | ZIMMERMAN D, HAY I D, GOUGH I R, et al. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1 039 patients conservatively treated at one institution during three decades[J]. Surgery, 1988, 104(6): 1157-1166. |
[6] |
CHAKRABORTY D, SHAKYA S, BALLAL S, et al. BRAF V600E and TERT promoter mutations in paediatric and young adult papillary thyroid cancer and clinicopathological correlation[J]. J Pediatr Endocrinol Metab, 2020, 33(11): 1465-1474.
doi: 10.1515/jpem-2020-0174 |
[7] | NEIVA F, MESQUITA J, PACO LIMA S, et al. Thyroid carcinoma in children and adolescents: a retrospective review[J]. Endocrinol Y Nutr, 2012, 59(2): 105-108. |
[8] |
RIVKEES S A, MAZZAFERRI E L, VERBURG F A, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy[J]. Endocr Rev, 2011, 32(6): 798-826.
doi: 10.1210/er.2011-0011 |
[9] |
XING M Z. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nat Rev Cancer, 2013, 13(3): 184-199.
doi: 10.1038/nrc3431 |
[10] |
AGRAWAL N, AKBANI R, AKSOY B A, et al. Integrated genomic characterization of papillary thyroid carcinoma[J]. Cell, 2014, 159(3): 676-690.
doi: 10.1016/j.cell.2014.09.050 |
[11] |
RICARTE-FILHO J C, LI S, GARCIA-RENDUELES M E R, et al. Identification of kinase fusion oncogenes in post-chernobyl radiation-induced thyroid cancers[J]. J Clin Investig, 2013, 123(11): 4935-4944.
doi: 10.1172/JCI69766 |
[12] |
CORDIOLI M I, MORAES L, BASTOS A U, et al. Fusion oncogenes are the main genetic events found in sporadic papillary thyroid carcinomas from children[J]. Thyroid, 2017, 27(2): 182-188.
doi: 10.1089/thy.2016.0387 |
[13] |
SISDELLI L, CORDIOLI M I C V, VAISMAN F, et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma[J]. Pediatr Blood Cancer, 2019, 66(7): e27707.
doi: 10.1002/pbc.27707 |
[14] |
CIAMPI R, KNAUF J A, KERLER R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer[J]. J Clin Investig, 2005, 115(1): 94-101.
doi: 10.1172/JCI23237 |
[15] |
CORDIOLI M I C V, MORAES L, CARVALHEIRA G, et al. AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma[J]. Cancer Med, 2016, 5(7): 1535-1541.
doi: 10.1002/cam4.698 |
[16] | 眭慧敏, 刘杰蕊, 王瞳, 等. 儿童及青少年分化型甲状腺癌远处转移的临床病理学危险因素分析[J]. 中国癌症杂志, 2019, 29(6): 423-428. |
SUI H M, LIU J R, WANG T, et al. Clinicopathological risk factors for distant metastasis of differentiated thyroid carcinoma in children and adolescents[J]. China Oncol, 2019, 29(6): 423-428. | |
[17] | ZHAO J, HUANG M, LING R, et al. Clinicopathological features, BRAF V600E mutation rate and its clinical correlation for thyroid carcinoma in children and adolescent[J]. Modern Oncology, 2020, 28(07): 1120-1124. |
[18] | 耿江桥, 王生才, 郭永丽, 等. 儿童甲状腺乳头状癌BRAF基因突变及其临床意义[J]. 解放军医药杂志, 2019, 31(3): 47-49. |
GENG J Q, WANG S C, GUO Y L, et al. BRAF gene mutation and its clinical significance in children with thyroid papillary carcinoma[J]. Med Pharm J Chin People’s Liberation Army, 2019, 31(3): 47-49. | |
[19] |
GIVENS D J, BUCHMANN L O, AGARWAL A M, et al. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma[J]. Laryngoscope, 2014, 124(9): E389-E393.
doi: 10.1002/lary.24668 |
[20] |
GENG J Q, WANG H M, LIU Y H, et al. Correlation between BRAF V600E mutation and clinicopathological features in pediatric papillary thyroid carcinoma[J]. Sci China Life Sci, 2017, 60(7): 729-738.
doi: 10.1007/s11427-017-9083-8 |
[21] |
ONDER S, OZTURK SARI S, YEGEN G, et al. Classic architecture with multicentricity and local recurrence, and absence of TERT promoter mutations are correlates of BRAF (V600E) harboring pediatric papillary thyroid carcinomas[J]. Endocr Pathol, 2016, 27(2): 153-161.
doi: 10.1007/s12022-016-9420-0 |
[22] |
STOSIC A, FULIGNI F, ANDERSON N D, et al. Diverse oncogenic fusions and distinct gene expression patterns define the genomic landscape of pediatric papillary thyroid carcinoma[J]. Cancer Res, 2021, 81(22): 5625-5637.
doi: 10.1158/0008-5472.CAN-21-0761 |
[23] | FRANCO A T, RICARTE-FILHO J C, ISAZA A, et al. Fusion oncogenes are associated with increased metastatic capacity and persistent disease in pediatric thyroid cancers[J]. J Clin Oncol, 2022, 40(10): 1081-1090. |
[24] | ALZAHRANI A S, ALSWAILEM M, ALSWAILEM A A, et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel[J]. J Clin Endocrinol Metab, 2020, 105(10): dgaa389. |
[25] | POTTER S L, REUTHER J, CHANDRAMOHAN R, et al. Integrated DNA and RNA sequencing reveals targetable alterations in metastatic pediatric papillary thyroid carcinoma[J]. Pediatr Blood Cancer, 2021, 68(1): e28741. |
[26] |
LEE Y A, LEE H, IM S W, et al. NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake[J]. J Clin Invest, 2021, 131(18): e144847.
doi: 10.1172/JCI144847 |
[27] |
PEKOVA B, SYKOROVA V, DVORAKOVA S, et al. RET, NTRK, ALK, BRAF and MET fusions in a large cohort of pediatric papillary thyroid carcinomas[J]. Thyroid, 2020, 30(12): 1771-1780.
doi: 10.1089/thy.2019.0802 |
[28] |
ALZAHRANI A S, MURUGAN A K, QASEM E, et al. Single point mutations in pediatric differentiated thyroid cancer[J]. Thyroid, 2017, 27(2): 189-196.
doi: 10.1089/thy.2016.0339 |
[29] |
PEKOVA B, DVORAKOVA S, SYKOROVA V, et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules[J]. Endocr Connect, 2019, 8(6): 796-805.
doi: 10.1530/EC-19-0069 |
[30] |
ALZAHRANI A S, QASEM E, MURUGAN A K, et al. Uncommon TERT promoter mutations in pediatric thyroid cancer[J]. Thyroid, 2016, 26(2): 235-241.
doi: 10.1089/thy.2015.0510 |
[31] |
DINAUER C A, BREUER C, RIVKEES S A. Differentiated thyroid cancer in children: diagnosis and management[J]. Curr Opin Oncol, 2008, 20(1): 59-65.
doi: 10.1097/CCO.0b013e3282f30220 |
[32] |
GRIGSBY P W, GAL-OR A, MICHALSKI J M, et al. Childhood and adolescent thyroid carcinoma[J]. Cancer, 2002, 95(4): 724-729.
doi: 10.1002/cncr.10725 |
[33] |
WELCH DINAUER C A, TUTTLE R M, ROBIE D K, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults[J]. Clin Endocrinol, 1998, 49(5): 619-628.
doi: 10.1046/j.1365-2265.1998.00584.x |
[34] |
CORDIOLI M I, MORAES L, CURY A N, et al. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma?[J]. Endocr Relat Cancer, 2015, 22(6): R311-R324.
doi: 10.1530/ERC-15-0381 |
[35] |
ALZAHRANI A S, ALKHAFAJI D, TULI M, et al. Comparison of differentiated thyroid cancer in children and adolescents (≤20 years) with young adults[J]. Clin Endocrinol, 2016, 84(4): 571-577.
doi: 10.1111/cen.12845 |
[36] |
LIU Z M, HU D, HUANG Y H, et al. Factors associated with distant metastasis in pediatric thyroid cancer: evaluation of the SEER database[J]. Endocr Connect, 2019, 8(2): 78-85.
doi: 10.1530/EC-18-0441 |
[37] |
ZENG X, WANG Z H, GUI Z Q, et al. High incidence of distant metastasis is associated with histopathological subtype of pediatric papillary thyroid cancer-a retrospective analysis based on SEER[J]. Front Endocrinol (Lausanne), 2021, 12: 760901.
doi: 10.3389/fendo.2021.760901 |
[38] |
NUCERA C, LAWLER J, PARANGI S. BRAF (V600E) and microenvironment in thyroid cancer: a functional link to drive cancer progression[J]. Cancer Res, 2011, 71(7): 2417-2422.
doi: 10.1158/0008-5472.CAN-10-3844 |
[39] |
VASKO V, ESPINOSA A V, SCOUTEN W, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion[J]. PNAS, 2007, 104(8): 2803-2808.
doi: 10.1073/pnas.0610733104 |
[40] | NUCERA C, GOLDFARB M, HODIN R, et al. Role of B-Raf (V600E) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf (V600E)[J]. Biochim Biophys Acta, 2009, 1795(2): 152-161. |
[41] |
KIM S J, LEE K E, MYONG J P, et al. BRAF V600E mutation is associated with tumor aggressiveness in papillary thyroid cancer[J]. World J Surg, 2012, 36(2): 310-317.
doi: 10.1007/s00268-011-1383-1 pmid: 22190222 |
[42] |
TAKACSOVA E, KRALIK R, WACZULIKOVA I, et al. A different prognostic value of BRAF V600E mutation positivity in various age groups of patients with papillary thyroid cancer[J]. Neoplasma, 2017, 64(1): 156-164.
doi: 10.4149/neo_2017_120 |
[43] |
CZARNIECKA A, OCZKO-WOJCIECHOWSKA M, BARCZYŃSKI M. BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence[J]. Gland Surg, 2016, 5(5): 495-505.
doi: 10.21037/gs.2016.09.09 |
[44] |
TUFANO R P, TEIXEIRA G V, BISHOP J, et al. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment[J]. Medicine, 2012, 91(5): 274-286.
doi: 10.1097/MD.0b013e31826a9c71 |
[45] |
NIKIFOROVA M N, CIAMPI R, SALVATORE G, et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas[J]. Cancer Lett, 2004, 209(1): 1-6.
doi: 10.1016/j.canlet.2003.12.004 |
[46] |
KUMAGAI A, NAMBA H, SAENKO V A, et al. Low frequency of BRAF T1796A mutations in childhood thyroid carcinomas[J]. J Clin Endocrinol Metab, 2004, 89(9): 4280-4284.
doi: 10.1210/jc.2004-0172 |
[47] |
PENKO K, LIVEZEY J, FENTON C, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients[J]. Thyroid, 2005, 15(4): 320-325.
doi: 10.1089/thy.2005.15.320 |
[48] | ROSENBAUM E, HOSLER G, ZAHURAK M, et al. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma[J]. Mod Pathol, 2005, 18(7): 898-902. |
[49] |
SASSOLAS G, HAFDI-NEJJARI Z, FERRARO A, et al. Oncogenic alterations in papillary thyroid cancers of young patients[J]. Thyroid, 2012, 22(1): 17-26.
doi: 10.1089/thy.2011.0215 |
[50] |
SANTORO M, CARLOMAGNO F. Central role of RET in thyroid cancer[J]. Cold Spring Harb Perspect Biol, 2013, 5(12): a009233.
doi: 10.1101/cshperspect.a009233 |
[51] |
KUROKAWA K, KAWAI K, HASHIMOTO M, et al. Cell signalling and gene expression mediated by RET tyrosine kinase[J]. J Intern Med, 2003, 253(6): 627-633.
doi: 10.1046/j.1365-2796.2003.01167.x |
[52] |
GALUPPINI F, VIANELLO F, CENSI S, et al. Differentiated thyroid carcinoma in pediatric age: genetic and clinical scenario[J]. Front Endocrinol (Lausanne), 2019, 10: 552.
doi: 10.3389/fendo.2019.00552 |
[53] |
WONG D, YIP S, SORENSEN P H. Methods for identifying patients with tropomyosin receptor kinase (TRK) fusion cancer[J]. Pathol Oncol Res, 2020, 26(3): 1385-1399.
doi: 10.1007/s12253-019-00685-2 |
[54] |
PRASAD M L, VYAS M, HORNE M J, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States[J]. Cancer, 2016, 122(7): 1097-1107.
doi: 10.1002/cncr.29887 |
[55] |
RICARTE-FILHO J C, HALADA S, O'NEILL A, et al. The clinical aspect of NTRK-fusions in pediatric papillary thyroid cancer[J]. Cancer Genet, 2022, 262/263: 57-63.
doi: 10.1016/j.cancergen.2022.01.002 |
[56] | ZHAO X N, KOTCH C, FOX E, et al. NTRK fusions identified in pediatric tumors: the frequency, fusion partners, and clinical outcome[J]. JCO Precis Oncol, 2021, 1: PO.20.00250. |
[57] |
GENG J Q, LIU Y H, GUO Y L, et al. Correlation between TERT C228T and clinic-pathological features in pediatric papillary thyroid carcinoma[J]. Sci China Life Sci, 2019, 62(12): 1563-1571.
doi: 10.1007/s11427-018-9546-5 |
[1] | 赵博伦, 朱冠男. NRAS突变型晚期黑色素瘤的治疗进展[J]. 中国癌症杂志, 2023, 33(10): 936-944. |
[2] | 孙迪, 孙郁青, 张鑫, 黄丽莎, 林岩松. 局部晚期或转移性儿童及青少年分化型甲状腺癌的基因特征与临床特征及131I疗效的关系[J]. 中国癌症杂志, 2022, 32(5): 380-387. |
[3] | 齐萌芳, 田甜, 黄蕤. 不同年龄儿童及青少年分化型甲状腺癌患者的临床病理学特征与131I治疗分析[J]. 中国癌症杂志, 2022, 32(5): 404-409. |
[4] | 郭文婷, 慕转转, 李征, 张迎强, 靳晓娜, 林岩松. 可疑甲状腺球蛋白增高性分化型甲状腺癌患者经131I治疗后的临床转归[J]. 中国癌症杂志, 2022, 32(5): 410-416. |
[5] | 中国临床肿瘤学会核医学专家委员会, 中国临床肿瘤学会甲状腺癌专家委员会, 中国医疗保健国际交流促进会甲状腺疾病专业委员会, 中国人口文化促进会甲状腺疾病防治专业委员会. 儿童及青少年分化型甲状腺癌核医学诊治中国专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(5): 451-468. |
[6] | 梅晓然, 冯方, 王辉, 韦智晓. 摄碘阳性的分化型甲状腺癌淋巴结转移灶131I疗效分析[J]. 中国癌症杂志, 2022, 32(11): 1091-1097. |
[7] | 彭子珊, 孔 辉, 鲍 真, 赵红杏, 刘 鑫, 卢韶华. 83例多发肺腺癌患者的临床病理学特征分析[J]. 中国癌症杂志, 2021, 31(5): 408-418. |
[8] | 张晓萌 , 麻宁一 , 祝鸿程 , 艾沓杉 , 任志刚 . 胰腺癌术后辅助性放化疗的效果及预后因素分析[J]. 中国癌症杂志, 2020, 30(7): 519-524. |
[9] | 杨 珂,郑 容,林岩松. 儿童青少年甲状腺癌诊治指南解读及其进展——核医学部分[J]. 中国癌症杂志, 2019, 29(6): 401-411. |
[10] | 张立阳,刘春浩,曹 越,刘洪沨,高维生,李小毅. 125例复发/持续性分化型甲状腺癌再次手术及其预后影响因素分析[J]. 中国癌症杂志, 2019, 29(6): 412-417. |
[11] | 眭慧敏,刘杰蕊,王 瞳,朱朝晖,林岩松. 儿童及青少年分化型甲状腺癌远处转移的临床病理学危险因素分析[J]. 中国癌症杂志, 2019, 29(6): 423-428. |
[12] | 卢承慧,李 娇,刘新峰,王国强,王增华,王叙馥. 治疗前刺激性甲状腺球蛋白阴性合并淋巴结转移的分化型甲状腺癌131I治疗后的临床转归[J]. 中国癌症杂志, 2019, 29(6): 429-433. |
[13] | 张 娜,林岩松,梁 军. 甲状腺球蛋白抗体测定在分化型甲状腺癌131I治疗中的临床意义[J]. 中国癌症杂志, 2019, 29(6): 452-456. |
[14] | 宋娟娟,刘延晴,林岩松. 中低危分化型甲状腺癌低剂量131I治疗后短期转归的临床分析[J]. 中国癌症杂志, 2019, 29(3): 207-211. |
[15] | 刘杰蕊,梁 军,林岩松. 分化型甲状腺癌131I治疗前刺激性Tg与最佳治疗反应的关系[J]. 中国癌症杂志, 2019, 29(2): 125-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn