中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (3): 201-209.doi: 10.19401/j.cnki.1007-3639.2023.03.002
收稿日期:
2023-01-30
修回日期:
2023-02-25
出版日期:
2023-03-30
发布日期:
2023-04-17
通信作者:
叶定伟(ORCID: 0000-0002-0836-391X),博士,主任医师,复旦大学附属肿瘤医院党委副书记、泌尿外科学科带头人。
作者简介:
郑盛锋(ORCID: 0000-0002-5046-2460),博士。
ZHENG Shengfeng(), ZHU Yiping, YE Dingwei(
)
Received:
2023-01-30
Revised:
2023-02-25
Published:
2023-03-30
Online:
2023-04-17
Contact:
YE Dingwei
文章分享
摘要:
膀胱癌(bladder cancer,BCa)是泌尿系统常见的恶性肿瘤之一。目前对于BCa的基础和临床研究均取得了重要进展,在基因和蛋白质层面进一步阐释了BCa发生、发展的驱动因素,更加深入地对肿瘤微环境的结构及相互作用进行了探索。BCa的早期诊断指标尿核基质蛋白22(nuclear matrix protein 22,NMP22)存在较大的临床限制,新的生物标志物在不断地被发现,促使早期诊断更加精准。BCa的综合治疗取得了重大突破,包括在以顺铂为基础的一线化疗上联合免疫检查点抑制剂治疗,抗体药物偶联物的应用,以及在不同的BCa发展阶段这些药物的联合应用等。为了更好地总结近期取得的研究成果,现对2022年度BCa的研究进展进行综述。
中图分类号:
郑盛锋, 朱一平, 叶定伟. 2022年度膀胱癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 201-209.
ZHENG Shengfeng, ZHU Yiping, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of bladder cancer in 2022[J]. China Oncology, 2023, 33(3): 201-209.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2015[J]. CA A Cancer J Clin, 2015, 65(1): 5-29.
doi: 10.3322/caac.21254 |
[3] |
CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA A Cancer J Clin, 2016, 66(2): 115-132.
doi: 10.3322/caac.21338 |
[4] | XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. |
[5] |
LOTAN Y, RAMAN J D, KONETY B, et al. Urinary analysis of FGFR3 and TERT gene mutations enhances performance of cxbladder tests and improves patient risk stratification[J]. J Urol, 2022, 209(4): 762-772.
doi: 10.1097/JU.0000000000003126 |
[6] | ZHANG B F, JIA P L, WANG J Y, et al. Integrated analysis of racial disparities in genomic architecture identifies a trans-ancestry prognostic subtype in bladder cancer[J]. Mol Oncol, 2022. [Online ahead of print] |
[7] |
MERTENS L S, CLAPS F, MAYR R, et al. Prognostic markers in invasive bladder cancer: FGFR3 mutation status versus P53 and Ki-67 expression: a multi-center, multi-laboratory analysis in 1058 radical cystectomy patients[J]. Urol Oncol, 2022, 40(3): 110.e1-110.e9.
doi: 10.1016/j.urolonc.2021.10.010 |
[8] |
LIU Z P, ZENG H, JIN K F, et al. TIGIT and PD-1 expression atlas predicts response to adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer[J]. Br J Cancer, 2022, 126(9): 1310-1317.
doi: 10.1038/s41416-022-01703-y |
[9] |
SHI M J, FONTUGNE J, MORENO-VEGA A, et al. FGFR3 mutational activation can induce luminal-like papillary bladder tumor formation and favors a male sex bias[J]. Eur Urol, 2023, 83(1): 70-81.
doi: 10.1016/j.eururo.2022.09.030 |
[10] | XIA Y, WANG X, LIU Y, et al. PKM2 is essential for bladder cancer growth and maintenance[J]. Cancer Res, 2022, 82(4): 571-585. |
[11] |
GALLO D, YOUNG J T F, FOURTOUNIS J, et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition[J]. Nature, 2022, 604(7907): 749-756.
doi: 10.1038/s41586-022-04638-9 |
[12] | FU S Q, YAO S Y, YUAN Y, et al. Multicenter phase Ⅱ trial of the WEE1 inhibitor adavosertib in refractory solid tumors harboring CCNE1 amplification[J]. J Clin Oncol, 2022. [Online ahead of print] |
[13] |
ZHANG C, YANG T. Long non-coding RNA LINC00473 promotes breast cancer progression via miR-424-5p/CCNE1 pathway[J]. Protein Pept Lett, 2023, 30(1): 72-84.
doi: 10.2174/0929866530666221026164454 |
[14] |
YAO S Y, MERIC-BERNSTAM F, HONG D, et al. Clinical characteristics and outcomes of phase Ⅰ cancer patients with CCNE1 amplification: MD Anderson experiences[J]. Sci Rep, 2022, 12(1): 8701.
doi: 10.1038/s41598-022-12669-5 |
[15] |
BELLMUNT J, KIM J, REARDON B, et al. Genomic predictors of good outcome, recurrence, or progression in high-grade T1 non-muscle-invasive bladder cancer[J]. Cancer Res, 2020, 80(20): 4476-4486.
doi: 10.1158/0008-5472.CAN-20-0977 pmid: 32868381 |
[16] |
DENEKA A Y, BACA Y, SEREBRIISKII I G, et al. Association of TP53 and CDKN2A mutation profile with tumor mutation burden in head and neck cancer[J]. Clin Cancer Res, 2022, 28(9): 1925-1937.
doi: 10.1158/1078-0432.CCR-21-4316 |
[17] |
HARTMANN A, MOSER K, KRIEGMAIR M, et al. Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma[J]. Am J Pathol, 1999, 154(3): 721-727.
pmid: 10079249 |
[18] |
BARTOLETTI R, CAI T, NESI G, et al. Loss of P16 expression and chromosome 9p21 LOH in predicting outcome of patients affected by superficial bladder cancer[J]. J Surg Res, 2007, 143(2): 422-427.
pmid: 17612565 |
[19] |
TRYBEK T, KOWALIK A, GÓŹDŹ S, et al. Telomeres and telomerase in oncogenesis[J]. Oncol Lett, 2020, 20(2): 1015-1027.
doi: 10.3892/ol.2020.11659 pmid: 32724340 |
[20] |
VERMA S, SHANKAR E, LIN S, et al. Identification of key genes associated with progression and prognosis of bladder cancer through integrated bioinformatics analysis[J]. Cancers (Basel), 2021, 13(23): 5931.
doi: 10.3390/cancers13235931 |
[21] | XU Y J, ZENG H, JIN K F, et al. Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscle-invasive bladder cancer[J]. J Immunother Cancer, 2022, 10(3): e003416. |
[22] |
MA Z K, LI X D, MAO Y Z, et al. Interferon-dependent SLC14A1 + cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer[J]. Cancer Cell, 2022, 40(12): 1550-1565. e7.
doi: 10.1016/j.ccell.2022.11.005 |
[23] |
ZHANG Z, LIANG Z J, LI D, et al. Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer[J]. Hum Cell, 2022, 35(2): 649-664.
doi: 10.1007/s13577-022-00673-w pmid: 35044630 |
[24] |
LIU L L, HOU Y X, DENG C Q, et al. Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment[J]. Nat Commun, 2022, 13(1): 6740.
doi: 10.1038/s41467-022-34495-z pmid: 36347860 |
[25] |
LIU Y D, ZHANG Q M, XING B C, et al. Immune phenotypic linkage between colorectal cancer and liver metastasis[J]. Cancer Cell, 2022, 40(4): 424-437. e5.
doi: 10.1016/j.ccell.2022.02.013 pmid: 35303421 |
[26] |
JI Q, ZHOU L H, SUI H, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation[J]. Nat Commun, 2020, 11(1): 1211.
doi: 10.1038/s41467-020-14869-x pmid: 32139701 |
[27] | DU T C, ZHANG K, ZHANG Z B, et al. ITGBL1 transcriptionally inhibited by JDP2 promotes the development of pancreatic cancer through the TGF-beta/Smad pathway[J]. Revista Brasileira De Pesquisas Med E Biol, 2022, 55: e11989. |
[28] |
PETERSON C M, HELTERBRAND M R, HARTGERINK J D. Covalent capture of a collagen mimetic peptide with an integrin-binding motif[J]. Biomacromolecules, 2022, 23(6): 2396-2403.
doi: 10.1021/acs.biomac.2c00155 |
[29] |
HAAG S L, SCHIELE N R, BERNARDS M T. Enhancement and mechanisms of MC3T3-E1 osteoblast-like cell adhesion to albumin through calcium exposure[J]. Biotechnol Appl Biochem, 2022, 69(2): 492-502.
doi: 10.1002/bab.v69.2 |
[30] |
LAFORGUE L, FERTIN A, USSON Y, et al. Efficient deformation mechanisms enable invasive cancer cells to migrate faster in 3D collagen networks[J]. Sci Rep, 2022, 12(1): 7867.
doi: 10.1038/s41598-022-11581-2 pmid: 35550548 |
[31] | DU G F, PATZELT S, VAN BEEK N, et al. Mucous membrane pemphigoid[J]. Autoimmun Rev, 2022, 21(4): 103036. |
[32] |
ZHENG R, DU M L, GE Y Q, et al. Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing[J]. Oncogene, 2021, 40(13): 2382-2394.
doi: 10.1038/s41388-021-01672-1 pmid: 33658628 |
[33] |
WALTER V, DEGRAFF D J, YAMASHITA H. Characterization of laminin-332 gene expression in molecular subtypes of human bladder cancer[J]. Am J Clin Exp Urol, 2022, 10(5): 311-319.
pmid: 36313206 |
[34] |
PICHLER R, TULCHINER G, FRITZ J, et al. Urinary UBC rapid and NMP22 test for bladder cancer surveillance in comparison to urinary cytology: results from a prospective single-center study[J]. Int J Med Sci, 2017, 14(9): 811-819.
doi: 10.7150/ijms.19929 pmid: 28824318 |
[35] |
HENTSCHEL A E, BEIJERT I J, BOSSCHIETER J, et al. Bladder cancer detection in urine using DNA methylation markers: a technical and prospective preclinical validation[J]. Clin Epigenetics, 2022, 14(1): 19.
doi: 10.1186/s13148-022-01240-8 pmid: 35123558 |
[36] |
OSSOLIŃSKI K, RUMAN T, COPIÉ V, et al. Metabolomic and elemental profiling of blood serum in bladder cancer[J]. J Pharm Anal, 2022, 12(6): 889-900.
doi: 10.1016/j.jpha.2022.08.004 pmid: 36605581 |
[37] |
SONG P, WU L R, YAN Y H, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics[J]. Nat Biomed Eng, 2022, 6(3): 232-245.
doi: 10.1038/s41551-021-00837-3 pmid: 35102279 |
[38] | XIAO Y, JU L G, QIAN K Y, et al. Non-invasive diagnosis and surveillance of bladder cancer with driver and passenger DNA methylation in a prospective cohort study[J]. Clin Transl Med, 2022, 12(8): e1008. |
[39] |
WITJES J A, BRUINS H M, CATHOMAS R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104.
doi: 10.1016/j.eururo.2020.03.055 pmid: 32360052 |
[40] |
PARK J C, CITRIN D E, AGARWAL P K, et al. Multimodal management of muscle-invasive bladder cancer[J]. Curr Probl Cancer, 2014, 38(3): 80-108.
doi: 10.1016/j.currproblcancer.2014.06.001 |
[41] | KOBAYASHI K, MATSUMOTO H, MISUMI T, et al. The efficacy of trimodal chemoradiotherapy with gemcitabine and cisplatin as a bladder-preserving strategy for the treatment of muscle-invasive bladder cancer: a single-arm phase Ⅱ study[J]. Jpn J Clin Oncol, 2022, 52(10): 1201-1207. |
[42] | QIU J L, ZHANG H F, XU D K, et al. Comparing long-term survival outcomes for muscle-invasive bladder cancer patients who underwent with radical cystectomy and bladder-sparing trimodality therapy: a multicentre cohort analysis[J]. J Oncol, 2022, 2022: 7306198. |
[43] |
ALATI A, FABIANO E, GEISS R, et al. Bladder preservation in older adults with muscle-invasive bladder cancer: a retrospective study with concurrent chemotherapy and twice-daily hypofractionated radiotherapy schedule[J]. J Geriatr Oncol, 2022, 13(7): 978-986.
doi: 10.1016/j.jgo.2022.05.014 pmid: 35717533 |
[44] |
MARCQ G, SOUHAMI L, CURY F L, et al. Phase 1 trial of atezolizumab plus trimodal therapy in patients with localized muscle-invasive bladder cancer[J]. Int J Radiat Oncol Biol Phys, 2021, 110(3): 738-741.
doi: 10.1016/j.ijrobp.2020.12.033 |
[45] |
FUKUSHIMA H, YOSHIDA S, KIJIMA T, et al. Combination of cisplatin and irradiation induces immunogenic cell death and potentiates postirradiation anti-PD-1 treatment efficacy in urothelial carcinoma[J]. Int J Mol Sci, 2021, 22(2): 535.
doi: 10.3390/ijms22020535 |
[46] |
ALMARZOUQ A, KOOL R, AL BULUSHI Y, et al. Impact of sarcopenia on outcomes of patients treated with trimodal therapy for muscle invasive bladder cancer[J]. Urol Oncol, 2022, 40(5): 194.e15-194.e22.
doi: 10.1016/j.urolonc.2021.11.002 |
[47] | PATIL G, BASU A. Emerging perioperative therapeutic approaches in muscle invasive bladder cancer[J]. Ther Adv Urol, 2022, 14: 17562872221134389. |
[48] |
Advanced Bladder Cancer ABC Meta-analysis Collaborators Group. Adjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and meta-analysis of individual participant data from randomised controlled trials[J]. Eur Urol, 2022, 81(1): 50-61.
doi: 10.1016/j.eururo.2021.09.028 |
[49] |
MIRON B, HOFFMAN-CENSITS J H, ANARI F, et al. Defects in DNA repair genes confer improved long-term survival after cisplatin-based neoadjuvant chemotherapy for muscle-invasive bladder cancer[J]. Eur Urol Oncol, 2020, 3(4): 544-547.
doi: S2588-9311(20)30028-6 pmid: 32165095 |
[50] |
GROENENDIJK F H, DE JONG J, FRANSEN VAN DE PUTTE E E, et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy[J]. Eur Urol, 2016, 69(3): 384-388.
doi: 10.1016/j.eururo.2015.01.014 pmid: 25636205 |
[51] |
LI Q, DAMISH A W, FRAZIER Z, et al. ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer[J]. Clin Cancer Res, 2019, 25(3): 977-988.
doi: 10.1158/1078-0432.CCR-18-1001 pmid: 29980530 |
[52] |
GIL-JIMENEZ A, VAN DORP J, CONTRERAS-SANZ A, et al. Assessment of predictive genomic biomarkers for response to cisplatin-based neoadjuvant chemotherapy in bladder cancer[J]. Eur Urol, 2023, 83(4): 313-317.
doi: 10.1016/j.eururo.2022.07.023 |
[53] |
WANG M L, CHEN X L, TAN P, et al. Acquired semi-squamatization during chemotherapy suggests differentiation as a therapeutic strategy for bladder cancer[J]. Cancer Cell, 2022, 40(9): 1044-1059.e8.
doi: 10.1016/j.ccell.2022.08.010 pmid: 36099882 |
[54] | PFISTER C, GRAVIS G, FLÉCHON A, et al. Dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin or gemcitabine and cisplatin as perioperative chemotherapy for patients with nonmetastatic muscle-invasive bladder cancer: results of the GETUG-AFU V05 VESPER trial[J]. J Clin Oncol, 2022, 40(18): 2013-2022. |
[55] |
HALL E, HUSSAIN S A, PORTA N, et al. Chemoradiotherapy in muscle-invasive bladder cancer: 10-yr follow-up of the phase 3 randomised controlled BC2001 trial[J]. Eur Urol, 2022, 82(3): 273-279.
doi: 10.1016/j.eururo.2022.04.017 pmid: 35577644 |
[56] |
BASILE G, BANDINI M, GIBB E A, et al. Neoadjuvant pembrolizumab and radical cystectomy in patients with muscle-invasive urothelial bladder cancer: 3-year median follow-up update of PURE-01 trial[J]. Clin Cancer Res, 2022, 28(23): 5107-5114.
doi: 10.1158/1078-0432.CCR-22-2158 pmid: 36190522 |
[57] |
SYLVESTER R J, BRAUSI M A, KIRKELS W J, et al. Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, bacillus Calmette-Guérin, and bacillus Calmette-Guérin plus isoniazid in patients with intermediate- and high-risk stage Ta T1 urothelial carcinoma of the bladder[J]. Eur Urol, 2010, 57(5): 766-773.
doi: 10.1016/j.eururo.2009.12.024 pmid: 20034729 |
[58] |
SALOMÉ B, SFAKIANOS J P, RANTI D, et al. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer[J]. Cancer Cell, 2022, 40(9): 1027-1043.e9.
doi: 10.1016/j.ccell.2022.08.005 pmid: 36099881 |
[59] |
YOU S, KIM M, HOI X P, et al. Discoidin domain receptor-driven gene signatures as markers of patient response to anti-PD-L1 immune checkpoint therapy[J]. J Natl Cancer Inst, 2022, 114(10): 1380-1391.
doi: 10.1093/jnci/djac140 pmid: 35918812 |
[60] |
FUNT S A, LATTANZI M, WHITING K, et al. Neoadjuvant atezolizumab with gemcitabine and cisplatin in patients with muscle-invasive bladder cancer: a multicenter, single-arm, phase Ⅱ trial[J]. J Clin Oncol, 2022, 40(12): 1312-1322.
doi: 10.1200/JCO.21.01485 |
[61] |
SZABADOS B, KOCKX M, ASSAF Z J, et al. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder[J]. Eur Urol, 2022, 82(2): 212-222.
doi: 10.1016/j.eururo.2022.04.013 pmid: 35577646 |
[62] | ROSENBERG J, SRIDHAR S S, ZHANG J S, et al. EV-101: a phase Ⅰ study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma[J]. J Clin Oncol, 2020, 38(10): 1041-1049. |
[63] |
POWLES T, ROSENBERG J E, SONPAVDE G P, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma[J]. N Engl J Med, 2021, 384(12): 1125-1135.
doi: 10.1056/NEJMoa2035807 |
[64] | FAN Y, LI Q H, SHEN Q, et al. Head-to-head comparison of the expression differences of NECTIN-4, TROP-2, and HER2 in urothelial carcinoma and its histologic variants[J]. Front Oncol, 2022, 12: 858865. |
[65] |
BARDIA A, MAYER I A, DIAMOND J R, et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer[J]. J Clin Oncol, 2017, 35(19): 2141-2148.
doi: 10.1200/JCO.2016.70.8297 pmid: 28291390 |
[66] |
FALTAS B, GOLDENBERG D M, OCEAN A J, et al. Sacituzumab govitecan, a novel antibody: drug conjugate, in patients with metastatic platinum-resistant urothelial carcinoma[J]. Clin Genitourin Cancer, 2016, 14(1): e75-e79.
doi: 10.1016/j.clgc.2015.10.002 |
[67] |
SHENG X, YAN X, WANG L, et al. Open-label, multicenter, phase Ⅱ study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma[J]. Clin Cancer Res, 2021, 27(1): 43-51.
doi: 10.1158/1078-0432.CCR-20-2488 |
[68] | SENG X N, HE Z S, HAN W Q, et al. An open-label, single-arm, multicenter, phase Ⅱ study of RC48 to evaluate and safety of subjects with HER2 overexpressing locally advanced or metastatic urothelial cancer (RC48-C009)[R]. ASCO, 2021: abstract 4584. |
[69] | ZHOU L, XU H Y, LI S M, et al. Study RC48-C014: preliminary results of RC48-ADC combined with toripalimab in patients with locally advanced or metastatic urothelial carcinoma[J]. J Clin Oncol, 2022, 40(6_suppl): 515. |
[1] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[2] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[3] | 中国肿瘤医院泌尿肿瘤协作组. 膀胱癌早诊早治专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(6): 607-618. |
[4] | 上海市抗癌协会胃癌专业委员会, 中国人体健康科技促进会胃肠肿瘤专业委员会. 侵犯邻近脏器的进展期胃癌的临床诊疗中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(5): 517-526. |
[5] | 钱斌, 陈海泉. 2023年度肺癌外科治疗领域重要进展[J]. 中国癌症杂志, 2024, 34(4): 335-339. |
[6] | 冯征, 郭勤浩, 朱俊, 吴小华, 温灏. 2023年度妇科恶性肿瘤治疗进展及展望[J]. 中国癌症杂志, 2024, 34(4): 340-360. |
[7] | 马凤华, 姜安绮, 陈奕清, 徐丛剑, 康玉. MRI鉴别宫颈腺体叶状增生与宫颈胃型腺癌的价值[J]. 中国癌症杂志, 2024, 34(4): 380-388. |
[8] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[9] | 汪学非, 周鹏, 唐兆庆. 胃癌外科治疗的新进展及发展趋势[J]. 中国癌症杂志, 2024, 34(3): 250-258. |
[10] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[11] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[12] | 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160. |
[13] | 刘志昱, 徐栋, 陈西昊, 李纪鹏. 局部进展期直肠癌新辅助放化疗后肿瘤退缩的影响因素分析及预测模型构建[J]. 中国癌症杂志, 2024, 34(2): 191-200. |
[14] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
[15] | 李桐, 杨慧娟. 卵巢黏液性癌的诊治进展[J]. 中国癌症杂志, 2024, 34(1): 90-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn