中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (8): 782-789.doi: 10.19401/j.cnki.1007-3639.2023.08.007
收稿日期:
2023-04-26
修回日期:
2023-07-06
出版日期:
2023-08-30
发布日期:
2023-09-01
通信作者:
赵东兵(ORCID:0000-0002-6770-2694),博士,主任医师。
作者简介:
孙崇源(ORCID:0000-0003-1354-2063),博士。
SUN Chongyuan(), ZHAO Dongbing(
)
Received:
2023-04-26
Revised:
2023-07-06
Published:
2023-08-30
Online:
2023-09-01
Contact:
ZHAO Dongbing
文章分享
摘要:
胃癌是全球范围内常见的恶性肿瘤之一,因起病隐匿、缺乏特异性临床表现,多数患者就诊时已处于晚期,预后较差。因此,寻找具有特异性和敏感性的生物标志物以协助诊断、指导治疗和预判预后具有重要意义。循环肿瘤DNA(circulating tumor DNA,ctDNA)是肿瘤细胞释放到血浆中的游离DNA片段,携带肿瘤相关的特异性基因特征和表观遗传学改变。与传统的组织活检相比,ctDNA具有许多优势,它可以利用微创获取的血液样本捕获肿瘤基因组图谱、克服肿瘤异质性并动态监测治疗反应、预测复发风险。在早期诊断方面,研究者将外周血ctDNA突变与蛋白质标志物相结合研发出名为CancerSEEK的检测方法,在胃癌、食管癌及胰腺癌早期诊断的敏感度超过69%。另一项研究则利用153个游离DNA甲基化位点进行联合检测,对Ⅰ、Ⅱ、Ⅲ期胃癌的诊断灵敏度分别为44%、59%和78%,特异度为92%。在指导治疗方面,ctDNA检测有助于筛选可能从人表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)、成纤维细胞生长因子受体2(fibroblast growth factor receptor 2,FGFR2)和表皮生长因子受体(epidermal growth factor receptor,EGFR)靶向治疗中获益的胃癌患者。此外,免疫治疗联合化疗已成为晚期胃癌患者的标准治疗方案,ctDNA检测能够对微卫星状态、肿瘤突变负荷和EB病毒相关胃癌进行评估,从而预测免疫治疗的效果,而特定基因如TGFBR2、RHOA和PREX2突变则提示免疫治疗效果不佳。对接受新辅助化疗或姑息性化疗的胃癌患者,化疗期间ctDNA拷贝数不稳定性、拷贝数变异和突变等位基因频率负荷的动态变化与疗效显著相关,动态监测有利于在出现影像学改变前及时调整治疗方案。在预测复发和预后方面,已有研究发现微小残留病变(minimal residual disease,MRD)可能是局部晚期癌症患者成功治疗后复发的主要原因,这在乳腺癌、肺癌和结直肠癌的随访复查中得到证实。利用ctDNA检测胃癌术后MRD表明,在随访过程中任何时间节点的ctDNA阳性都与复发风险增加相关,无病生存期和总生存期也较短,与影像学复发相比其中位提前时间为4.5 ~ 6.0个月。此外,ctDNA检测中的TP53突变、MET扩增、THBS1与TIMP-3甲基化和肿瘤进展或腹膜转移相关,预后同样较差。尽管 ctDNA 作为一种微创肿瘤筛查和监测生物标志物具有巨大的潜力,其在胃癌的应用中仍面临一些限制和挑战。本文就ctDNA在胃癌中的应用现状和前景进行综述。
中图分类号:
孙崇源, 赵东兵. 循环肿瘤DNA在胃癌诊疗中的应用进展和展望[J]. 中国癌症杂志, 2023, 33(8): 782-789.
SUN Chongyuan, ZHAO Dongbing. The progress and future prospects of the application of circulating tumor DNA in the diagnosis and treatment of gastric cancer[J]. China Oncology, 2023, 33(8): 782-789.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075.
doi: 10.1016/S0140-6736(17)33326-3 |
[3] |
SIEGEL R, MA J M, ZOU Z H, et al. Cancer statistics, 2014[J]. CA A Cancer J Clin, 2014, 64(1): 9-29.
doi: 10.3322/caac.21208 |
[4] |
JOSHI S S, BADGWELL B D. Current treatment and recent progress in gastric cancer[J]. CA Cancer J Clin, 2021, 71(3): 264-279.
doi: 10.3322/caac.v71.3 |
[5] |
SPELLMAN P T, GRAY J W. Detecting cancer by monitoring circulating tumor DNA[J]. Nat Med, 2014, 20(5): 474-475.
doi: 10.1038/nm.3564 pmid: 24804754 |
[6] | WALLANDER K, EISFELDT J, LINDBLAD M, et al. Cell-free tumour DNA analysis detects copy number alterations in gastro-oesophageal cancer patients[J]. PLoS One, 2021, 16(2): e0245488. |
[7] |
ZHANG M, QI C S, WANG Z H, et al. Molecular characterization of ctDNA from Chinese patients with advanced gastric adenocarcinoma reveals actionable alterations for targeted and immune therapy[J]. J Mol Med (Berl), 2021, 99(9): 1311-1321.
doi: 10.1007/s00109-021-02093-z pmid: 34057552 |
[8] |
MONDELO-MACÍA P, CASTRO-SANTOS P, CASTILLO-GARCÍA A, et al. Circulating free DNA and its emerging role in autoimmune diseases[J]. J Pers Med, 2021, 11(2): 151.
doi: 10.3390/jpm11020151 |
[9] |
HUANG R S P, XIAO J P, PAVLICK D C, et al. Circulating cell-free DNA yield and circulating-tumor DNA quantity from liquid biopsies of 12 139 cancer patients[J]. Clin Chem, 2021, 67(11): 1554-1566.
doi: 10.1093/clinchem/hvab176 pmid: 34626187 |
[10] |
STROUN M, MAURICE P, VASIOUKHIN V, et al. The origin and mechanism of circulating DNA[J]. Ann N Y Acad Sci, 2000, 906: 161-168.
doi: 10.1111/nyas.2000.906.issue-1 |
[11] | UNDERHILL H R, KITZMAN J O, HELLWIG S, et al. Fragment length of circulating tumor DNA[J]. PLoS Genet, 2016, 12(7): e1006162. |
[12] |
LIU X J, LANG J D, LI S J, et al. Fragment enrichment of circulating tumor DNA with low-frequency mutations[J]. Front Genet, 2020, 11: 147.
doi: 10.3389/fgene.2020.00147 pmid: 32180799 |
[13] |
JOGO T, NAKAMURA Y, SHITARA K, et al. Circulating tumor DNA analysis detects FGFR2 amplification and concurrent genomic alterations associated with FGFR inhibitor efficacy in advanced gastric cancer[J]. Clin Cancer Res, 2021, 27(20): 5619-5627.
doi: 10.1158/1078-0432.CCR-21-1414 |
[14] |
YANG S Y, TALBI A, WANG X, et al. Pharmacokinetics study of calf thymus DNA in rats and beagle dogs with (3)H-labeling and tracing method[J]. J Pharm Biomed Anal, 2014, 88: 60-65.
doi: 10.1016/j.jpba.2013.08.016 pmid: 24036033 |
[15] |
LEE J S, KIM M, SEONG M W, et al. Plasma vs serum in circulating tumor DNA measurement: characterization by DNA fragment sizing and digital droplet polymerase chain reaction[J]. Clin Chem Lab Med, 2020, 58(4): 527-532.
doi: 10.1515/cclm-2019-0896 |
[16] |
ZHANG H, HU Y, WANG Y, et al. Application of ddPCR in detection of the status and abundance of EGFR T790M mutation in the plasma samples of non-small cell lung cancer patients[J]. Front Oncol, 2022, 12: 942123.
doi: 10.3389/fonc.2022.942123 |
[17] |
MATSUOKA T, YASHIRO M. Biomarkers of gastric cancer: current topics and future perspective[J]. World J Gastroenterol, 2018, 24(26): 2818-2832.
doi: 10.3748/wjg.v24.i26.2818 |
[18] |
COHEN J D, LI L, WANG Y X, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test[J]. Science, 2018, 359(6378): 926-930.
doi: 10.1126/science.aar3247 pmid: 29348365 |
[19] |
LAN Y T, CHEN M H, FANG W L, et al. Clinical relevance of cell-free DNA in gastrointestinal tract malignancy[J]. Oncotarget, 2017, 8(2): 3009-3017.
doi: 10.18632/oncotarget.v8i2 |
[20] |
GRENDA A, WOJAS-KRAWCZYK K, SKOCZYLAS T, et al. HER2 gene assessment in liquid biopsy of gastric and esophagogastric junction cancer patients qualified for surgery[J]. BMC Gastroenterol, 2020, 20(1): 382.
doi: 10.1186/s12876-020-01531-5 pmid: 33198632 |
[21] |
REN J, LU P, ZHOU X, et al. Genome-scale methylation analysis of circulating cell-free DNA in gastric cancer patients[J]. Clin Chem, 2022, 68(2): 354-364.
doi: 10.1093/clinchem/hvab204 |
[22] |
KLEIN E A, RICHARDS D, COHN A, et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set[J]. Ann Oncol, 2021, 32(9): 1167-1177.
doi: 10.1016/j.annonc.2021.05.806 pmid: 34176681 |
[23] |
ANDERSON B W, SUH Y S, CHOI B, et al. Detection of gastric cancer with novel methylated DNA markers: discovery, tissue validation, and pilot testing in plasma[J]. Clin Cancer Res, 2018, 24(22): 5724-5734.
doi: 10.1158/1078-0432.CCR-17-3364 pmid: 29844130 |
[24] |
RAZAVI P, LI B T, BROWN D N, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants[J]. Nat Med, 2019, 25(12): 1928-1937.
doi: 10.1038/s41591-019-0652-7 pmid: 31768066 |
[25] | RICCIUTI B, JONES G, SEVERGNINI M, et al. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC)[J]. J Immunother Cancer, 2021, 9(3): e001504. |
[26] |
BANG Y J, VAN CUTSEM E, FEYEREISLOVA A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial[J]. Lancet, 2010, 376(9742): 687-697.
doi: 10.1016/S0140-6736(10)61121-X |
[27] |
JANJIGIAN Y Y, KAWAZOE A, YAÑEZ P, et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer[J]. Nature, 2021, 600(7890): 727-730.
doi: 10.1038/s41586-021-04161-3 |
[28] | YAMAGUCHI K, BANG Y J, IWASA S, et al. Trastuzumab deruxtecan in anti-human epidermal growth factor receptor 2 treatment-naive patients with human epidermal growth factor receptor 2-low gastric or gastroesophageal junction adenocarcinoma: exploratory cohort results in a phase Ⅱ trial[J]. J Clin Oncol, 2023, 41(4): 816-825. |
[29] |
ZHANG H, WANG Y, WANG Y, et al. Intratumoral and intertumoral heterogeneity of HER2 immunohistochemical expression in gastric cancer[J]. Pathol Res Pract, 2020, 216(11): 153229.
doi: 10.1016/j.prp.2020.153229 |
[30] |
GAO J, WANG H X, ZANG W C, et al. Circulating tumor DNA functions as an alternative for tissue to overcome tumor heterogeneity in advanced gastric cancer[J]. Cancer Sci, 2017, 108(9): 1881-1887.
doi: 10.1111/cas.2017.108.issue-9 |
[31] |
WANG H X, LI B F, LIU Z T, et al. HER2 copy number of circulating tumour DNA functions as a biomarker to predict and monitor trastuzumab efficacy in advanced gastric cancer[J]. Eur J Cancer, 2018, 88: 92-100.
doi: S0959-8049(17)31372-2 pmid: 29207318 |
[32] | ZHANG C, CHEN Z H, CHONG X Y, et al. Clinical implications of plasma ctDNA features and dynamics in gastric cancer treated with HER2-targeted therapies[J]. Clin Transl Med, 2020, 10(8): e254. |
[33] |
WANG D S, LIU Z X, LU Y X, et al. Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer[J]. Gut, 2019, 68(7): 1152-1161.
doi: 10.1136/gutjnl-2018-316522 pmid: 30269082 |
[34] |
WANG Y, ZHAO C H, CHANG L P, et al. Circulating tumor DNA analyses predict progressive disease and indicate trastuzumab-resistant mechanism in advanced gastric cancer[J]. EBioMedicine, 2019, 43: 261-269.
doi: S2352-3964(19)30237-3 pmid: 31031019 |
[35] |
OOKI A, YAMAGUCHI K. The beginning of the era of precision medicine for gastric cancer with fibroblast growth factor receptor 2 aberration[J]. Gastric Cancer, 2021, 24(6): 1169-1183.
doi: 10.1007/s10120-021-01235-z pmid: 34398359 |
[36] |
MARON S B, CHASE L M, LOMNICKI S, et al. Circulating tumor DNA sequencing analysis of gastroesophageal adenocarcinoma[J]. Clin Cancer Res, 2019, 25(23): 7098-7112.
doi: 10.1158/1078-0432.CCR-19-1704 pmid: 31427281 |
[37] |
SMYTH E C, VLACHOGIANNIS G, HEDAYAT S, et al. EGFR amplification and outcome in a randomised phase Ⅲ trial of chemotherapy alone or chemotherapy plus panitumumab for advanced gastro-oesophageal cancers[J]. Gut, 2021, 70(9): 1632-1641.
doi: 10.1136/gutjnl-2020-322658 |
[38] |
JANJIGIAN Y Y, SHITARA K, MOEHLER M, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial[J]. Lancet, 2021, 398(10294): 27-40.
doi: 10.1016/S0140-6736(21)00797-2 pmid: 34102137 |
[39] |
JIN Y, CHEN D L, WANG F, et al. The predicting role of circulating tumor DNA landscape in gastric cancer patients treated with immune checkpoint inhibitors[J]. Mol Cancer, 2020, 19(1): 154.
doi: 10.1186/s12943-020-01274-7 pmid: 33126883 |
[40] |
WILLIS J, LEFTEROVA M I, ARTYOMENKO A, et al. Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel[J]. Clin Cancer Res, 2019, 25(23): 7035-7045.
doi: 10.1158/1078-0432.CCR-19-1324 pmid: 31383735 |
[41] | FRIDLAND S, CHOI J, NAM M, et al. Assessing tumor heterogeneity: integrating tissue and circulating tumor DNA (ctDNA) analysis in the era of immuno-oncology-blood TMB is not the same as tissue TMB[J]. J Immunother Cancer, 2021, 9(8): e002551. |
[42] |
QIU M Z, HE C Y, LU S X, et al. Prospective observation: clinical utility of plasma Epstein-Barr virus DNA load in EBV-associated gastric carcinoma patients[J]. Int J Cancer, 2020, 146(1): 272-280.
doi: 10.1002/ijc.v146.1 |
[43] | ZHANG M, YANG H L, FU T, et al. Liquid biopsy: circulating tumor DNA monitors neoadjuvant chemotherapy response and prognosis in stage Ⅱ/Ⅲ gastric cancer[J]. Mol Oncol, 2023. Online ahead of print. |
[44] |
LEAL A, VAN GRIEKEN N C T, PALSGROVE D N, et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer[J]. Nat Commun, 2020, 11(1): 525.
doi: 10.1038/s41467-020-14310-3 pmid: 31988276 |
[45] |
SLAGTER A E, VOLLEBERGH M A, CASPERS I A, et al. Prognostic value of tumor markers and ctDNA in patients with resectable gastric cancer receiving perioperative treatment: results from the CRITICS trial[J]. Gastric Cancer, 2022, 25(2): 401-410.
doi: 10.1007/s10120-021-01258-6 |
[46] |
XI W Q, ZHOU C F, XU F, et al. Molecular evolutionary process of advanced gastric cancer during sequential chemotherapy detected by circulating tumor DNA[J]. J Transl Med, 2022, 20(1): 365.
doi: 10.1186/s12967-022-03567-5 pmid: 35962408 |
[47] |
LARRIBÈRE L, MARTENS U M. Advantages and challenges of using ctDNA NGS to assess the presence of minimal residual disease (MRD) in solid tumors[J]. Cancers, 2021, 13(22): 5698.
doi: 10.3390/cancers13225698 |
[48] |
LIPSYC-SHARF M, DE BRUIN E C, SANTOS K, et al. Circulating tumor DNA and late recurrence in high-risk hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer[J]. J Clin Oncol, 2022, 40(22): 2408-2419.
doi: 10.1200/JCO.22.00908 |
[49] |
XIA L, MEI J D, KANG R, et al. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: a prospective multicenter cohort study (LUNGCA-1)[J]. Clin Cancer Res, 2022, 28(15): 3308-3317.
doi: 10.1158/1078-0432.CCR-21-3044 |
[50] |
RYOO S B, HEO S, LIM Y, et al. Personalised circulating tumour DNA assay with large-scale mutation coverage for sensitive minimal residual disease detection in colorectal cancer[J]. Br J Cancer, 2023, 129(2): 374-381.
doi: 10.1038/s41416-023-02300-3 |
[51] |
YANG J, GONG Y H, LAM V K, et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer[J]. Cell Death Dis, 2020, 11(5): 346.
doi: 10.1038/s41419-020-2531-z pmid: 32393783 |
[52] | KIM Y W, KIM Y H, SONG Y, et al. Monitoring circulating tumor DNA by analyzing personalized cancer-specific rearrangements to detect recurrence in gastric cancer[J]. Exp Mol Med, 2019, 51(8): 1-10. |
[53] |
ZHAO D B, YUE P L, WANG T B, et al. Personalized analysis of minimal residual cancer cells in peritoneal lavage fluid predicts peritoneal dissemination of gastric cancer[J]. J Hematol Oncol, 2021, 14(1): 164.
doi: 10.1186/s13045-021-01175-2 |
[54] | LI J, LI Z Y, DING Y J, et al. TP53 mutation and MET amplification in circulating tumor DNA analysis predict disease progression in patients with advanced gastric cancer[J]. PeerJ, 2021, 9: e11146. |
[55] |
KO K, KANANAZAWA Y, YAMADA T, et al. Methylation status and long-fragment cell-free DNA are prognostic biomarkers for gastric cancer[J]. Cancer Med, 2021, 10(6): 2003-2012.
doi: 10.1002/cam4.v10.6 |
[56] | HU X Y, LING Z N, HONG L L, et al. Circulating methylated THBS1 DNAs as a novel marker for predicting peritoneal dissemination in gastric cancer[J]. J Clin Lab Anal, 2021, 35(9): e23936. |
[57] |
YU J L, LV P, HAN J, et al. Methylated TIMP-3 DNA in body fluids is an independent prognostic factor for gastric cancer[J]. Arch Pathol Lab Med, 2014, 138(11): 1466-1473.
doi: 10.5858/arpa.2013-0285-OA |
[58] | PIMSON C, EKALAKSANANAN T, PIENTONG C, et al. Aberrant methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer[J]. PeerJ, 2016, 4: e2112. |
[59] | LING Z Q, LV P, LU X X, et al. Circulating methylated XAF1 DNA indicates poor prognosis for gastric cancer[J]. PLoS One, 2013, 8(6): e67195. |
[60] |
BALGKOURANIDOU I, KARAYIANNAKIS A, MATTHAIOS D, et al. Assessment of SOX17 DNA methylation in cell free DNA from patients with operable gastric cancer. Association with prognostic variables and survival[J]. Clin Chem Lab Med, 2013, 51(7): 1505-1510.
doi: 10.1515/cclm-2012-0320 pmid: 23403728 |
[1] | 葛祖荫, 宋坤, 林云霄, 钟烨凌, 郝敬铎. 循环肿瘤细胞FCGBP和BIGH3作为结直肠癌潜在生物标志物的可行性研究[J]. 中国癌症杂志, 2024, 34(8): 745-752. |
[2] | 张羽, 刘强. 液体活检在乳腺癌精准治疗中的应用进展及展望[J]. 中国癌症杂志, 2022, 32(8): 688-697. |
[3] | 李小秋, CD30阳性淋巴瘤病理专家组. CD30在淋巴瘤中的表达及检测:现状与挑战[J]. 中国癌症杂志, 2022, 32(6): 512-518. |
[4] | 谢梦青, 储香玲, 周 娟, 苏春霞. 小细胞肺癌免疫治疗相关生物标志物研究进展[J]. 中国癌症杂志, 2021, 31(7): 635-639. |
[5] | 陈馨宁, 黄 斐, 沈敏娜, 杨轶慧, 王蓓丽, 郭 玮 . 转移性结直肠癌患者ctDNA基因突变检测方法的比较及影响因素分析[J]. 中国癌症杂志, 2021, 31(3): 192-197. |
[6] | 中国抗癌协会妇科肿瘤专业委员会, 中华医学会病理学分会, 国家病理质控中心. 子宫内膜癌分子检测中国专家共识(2021年版)[J]. 中国癌症杂志, 2021, 31(11): 1126-1144. |
[7] | 徐亦天, 黄 陈. 非血液来源液体活检在胃癌早期诊断中的研究进展[J]. 中国癌症杂志, 2021, 31(10): 936-943. |
[8] | 王 洁. 免疫检查点抑制剂在肺癌治疗应用中的挑战与方向[J]. 中国癌症杂志, 2020, 30(10): 744-749. |
[9] | 孙健达,熊 俊,张汉雄,陈意标. 血液标志物在局部晚期鼻咽癌中的预测价值[J]. 中国癌症杂志, 2019, 29(7): 528-534. |
[10] | 王秀月,赵 川,陈 彻,等. 长链非编码RNA作为肝细胞癌诊断新型血清标志物的meta分析[J]. 中国癌症杂志, 2018, 28(3): 229-235. |
[11] | 聂 军,周 波,张郁林. 长链非编码RNA PANDAR在非小细胞肺癌中的表达和临床意义[J]. 中国癌症杂志, 2017, 27(7): 569-574. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn