中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (5): 445-450.doi: 10.19401/j.cnki.1007-3639.2022.05.010
收稿日期:
2022-01-29
修回日期:
2022-05-11
出版日期:
2022-05-30
发布日期:
2022-06-09
通信作者:
应红梅
E-mail:jjy2019531@163.com;yinghm@hotmail.com
作者简介:
江健韵(ORCID: 0000-0002-3137-8597),学士 E-mail: jjy2019531@163.com
JIANG Jianyun1,2()(
), YING Hongmei1,2(
)(
)
Received:
2022-01-29
Revised:
2022-05-11
Published:
2022-05-30
Online:
2022-06-09
Contact:
YING Hongmei
E-mail:jjy2019531@163.com;yinghm@hotmail.com
文章分享
摘要:
多数黑色素瘤具有BRAF V600E/K突变,因此V600成为黑色素瘤精准治疗的重要靶点,并通常可被BRAF抑制剂和MEK抑制剂联合阻断。免疫检查点抑制剂的出现也极大地改善了BRAF V600突变阳性的晚期黑色素瘤患者的治疗结局,探究这部分患者的最佳一线治疗及序贯治疗顺序的临床试验正在开展。本文就精准医疗时代BRAF V600突变阳性的晚期黑色素瘤患者治疗的最新研究进展进行综述。
中图分类号:
江健韵, 应红梅. BRAF V600突变阳性的晚期黑色素瘤治疗的临床研究进展[J]. 中国癌症杂志, 2022, 32(5): 445-450.
JIANG Jianyun, YING Hongmei. Clinical research progress in the treatment of BRAF V600 mutation-positive advanced melanoma[J]. China Oncology, 2022, 32(5): 445-450.
表1
近年开展的评估BRAFi/MEKi/ICI对于BRAF V600突变阳性晚期黑色素瘤疗效的Ⅲ期临床试验汇总"
NCT number | Follow-up time t/year | Number of cases n | Intervention/treatment | Primary outcome | Intervention/treatment |
---|---|---|---|---|---|
coBRIM (NCT01689519)[ | ≥5.0 | 495 | Vemurafenib/cobimetinib vs vemurafenib | Median PFS: 12.6 months vs 7.2 months; 5-year PFS rate: 14% vs 10% | 2019.07.21 |
CheckMate-067 (NCT01844505)[ | ≥5.0 | 945 | Nivolumab/ipilimumab vs nivolumab vs ipilimumab | Median OS: NR vs 45.5 months vs 24.6 months; 5-year OS rate: 60% vs 46% vs 30% | 2016.08.01 |
IMspire-150 (NCT02908672)[ | 2.0 | 514 | Vemurafenib/cobimetinib/atezolizumab vs vemurafenib/cobimetinib | Median PFS: 15.1 months vs 10.6 months | 2019.10.11 |
KEYNOTE-22 (NCT01597908)[ | 3.0 | 563 | Dabrafenib/trametinib/pembrolizumab vs dabrafenib/trametinib | Median PFS: 16.9 months vs 10.7 months; Median OS: NR vs 26.3 months | 2019.04.25 |
COMBI-I (NCT02967692)[ | 2.3 | 532 | Dabrafenib/trametinib/spartalizumab vs dabrafenib/trametinib | Median PFS: 16.2 months vs 12.0 months | 2020.08.11 |
[1] |
MICHIELIN O, VAN AKKOOI A C J, ASCIERTO P A, et al. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†[J]. Ann Oncol, 2019, 30(12): 1884-1901.
doi: 10.1093/annonc/mdz411 |
[2] |
RICHTIG G, HOELLER C, KASHOFER K, et al. Beyond the BRAF V600E hotspot: biology and clinical implications of rare BRAF gene mutations in melanoma patients[J]. Br J Dermatol, 2017, 177(4): 936-944.
doi: 10.1111/bjd.15436 |
[3] |
HAUSCHILD A, ASCIERTO P A, SCHADENDORF D, et al. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib monotherapy: analysis from phase 2 and 3 clinical trials[J]. Eur J Cancer, 2020, 125: 114-120.
doi: 10.1016/j.ejca.2019.10.033 |
[4] |
ROBERT C, FLAHERTY K, NATHAN P, et al. Five-year outcomes from a phase 3 METRIC study in patients with BRAF V600E/K-mutant advanced or metastatic melanoma[J]. Eur J Cancer, 2019, 109: 61-69.
doi: 10.1016/j.ejca.2018.12.015 |
[5] |
SIMEONE E, GRIMALDI A M, FESTINO L, et al. Combination treatment of patients with BRAF-mutant melanoma: a new standard of care[J]. BioDrugs, 2017, 31(1): 51-61.
doi: 10.1007/s40259-016-0208-z |
[6] |
WOLCHOK J D, KLUGER H, CALLAHAN M K, et al. Nivolumab plus ipilimumab in advanced melanoma[J]. N Engl J Med, 2013, 369(2): 122-133.
doi: 10.1056/NEJMoa1302369 |
[7] |
LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2019, 381(16): 1535-1546.
doi: 10.1056/NEJMoa1910836 |
[8] | WOLCHOK J D, CHIARION-SILENI V, GONZALEZ R, et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma[J]. J Clin Oncol, 2022, 40(2): 127-137. |
[9] |
LUKE J J, FLAHERTY K T, RIBAS A, et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma[J]. Nat Rev Clin Oncol, 2017, 14(8): 463-482.
doi: 10.1038/nrclinonc.2017.43 |
[10] |
EGGERMONT A M M, BLANK C U, MANDALA M, et al. Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage Ⅲ melanoma: updated results from the EORTC 1325-MG/KEYNOTE-054 trial[J]. J Clin Oncol, 2020, 38(33): 3925-3936.
doi: 10.1200/JCO.20.02110 |
[11] |
LONG G V, HAUSCHILD A, SANTINAMI M, et al. Adjuvant dabrafenib plus trametinib in stage Ⅲ BRAF-mutated melanoma[J]. N Engl J Med, 2017, 377(19): 1813-1823.
doi: 10.1056/NEJMoa1708539 |
[12] |
ASCIERTO P A, DRÉNO B, LARKIN J, et al. 5-year outcomes with cobimetinib plus vemurafenib in BRAF V600 mutation-positive advanced melanoma: extended follow-up of the coBRIM study[J]. Clin Cancer Res, 2021, 27(19): 5225-5235.
doi: 10.1158/1078-0432.CCR-21-0809 |
[13] |
GUTZMER R, STROYAKOVSKIY D, GOGAS H, et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF V600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2020, 395(10240): 1835-1844.
doi: 10.1016/S0140-6736(20)30934-X |
[14] |
ROBERT C, GROB J J, STROYAKOVSKIY D, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma[J]. N Engl J Med, 2019, 381(7): 626-636.
doi: 10.1056/NEJMoa1904059 |
[15] |
DUMMER R, LONG G V, ROBERT C, et al. Randomized phase Ⅲ trial evaluating spartalizumab plus dabrafenib and trametinib for BRAF V600-mutant unresectable or metastatic melanoma[J]. J Clin Oncol, 2022, 40(13): 1428-1438.
doi: 10.1200/JCO.21.01601 |
[16] |
RIBAS A, DAUD A, PAVLICK A C, et al. Extended 5-year follow-up results of a phase Ⅰb study (BRIM7) of vemurafenib and cobimetinib in BRAF-mutant melanoma[J]. Clin Cancer Res, 2020, 26(1): 46-53.
doi: 10.1158/1078-0432.CCR-18-4180 |
[17] | LONG G V, EROGLU Z, INFANTE J, et al. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib[J]. J Clin Oncol, 2018, 36(7): 667-673. |
[18] |
LARKIN J, HODI F S, WOLCHOK J D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373(13): 1270-1271.
doi: 10.1056/NEJMc1509660 |
[19] |
WOLCHOK J D, CHIARION-SILENI V, GONZALEZ R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2017, 377(14): 1345-1356.
doi: 10.1056/NEJMoa1709684 |
[20] |
HODI F S, CHIARION-SILENI V, GONZALEZ R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19(11): 1480-1492.
doi: 10.1016/S1470-2045(18)30700-9 |
[21] |
FREDERICK D T, PIRIS A, COGDILL A P, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma[J]. Clin Cancer Res, 2013, 19(5): 1225-1231.
doi: 10.1158/1078-0432.CCR-12-1630 |
[22] | HU-LIESKOVAN S, MOK S, HOMET MORENO B, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF (V600E) melanoma[J]. Sci Transl Med, 2015, 7(279): 279ra41. |
[23] |
HU-LIESKOVAN S, ROBERT L, HOMET MORENO B, et al. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges[J]. J Clin Oncol, 2014, 32(21): 2248-2254.
doi: 10.1200/JCO.2013.52.1377 |
[24] |
RIBAS A, HODI F S, CALLAHAN M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab[J]. N Engl J Med, 2013, 368(14): 1365-1366.
doi: 10.1056/NEJMc1302338 |
[25] |
MINOR D R, PUZANOV I, CALLAHAN M K, et al. Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab[J]. Pigment Cell Melanoma Res, 2015, 28(5): 611-612.
doi: 10.1111/pcmr.12383 |
[26] | FERRUCCI P F, DI GIACOMO A M, DEL VECCHIO M, et al. KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in -mutant melanoma[J]. Jr Immunother Cancer, 2020, 8(2): 66-68. |
[27] |
ASCIERTO P A, MANDALA M, FERRUCCI P F, et al. LBA40 SECOMBIT: The best sequential approach with combo immunotherapy[ipilimumab (I)/nivolumab (N)] and combo target therapy[encorafenib (E)/binimetinib (B)] in patients with BRAF mutated metastatic melanoma: a phase Ⅱ randomized study[J]. Ann Oncol, 2021, 32: S1316-S1317.
doi: 10.1016/j.annonc.2021.08.2118 |
[28] | ASCIERTO P A, MANDALA M, FERRUCCI P F, et al. LBA45 first report of efficacy and safety from the phase Ⅱ study SECOMBIT (SEquential COMBo immuno and targeted therapy study)[J]. Ann Oncol, 2020, 31: S1173-S1174. |
[29] |
JOSEPH R W, ELASSAISS-SCHAAP J, KEFFORD R, et al. Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab[J]. Clin Cancer Res, 2018, 24(20): 4960-4967.
doi: 10.1158/1078-0432.CCR-17-2386 |
[30] |
WARNER A B, POSTOW M A. Bigger is not always better: tumor size and prognosis in advanced melanoma[J]. Clin Cancer Res, 2018, 24(20): 4915-4917.
doi: 10.1158/1078-0432.CCR-18-1311 |
[31] |
DAUD A I, WOLCHOK J D, ROBERT C, et al. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma[J]. J Clin Oncol, 2016, 34(34): 4102-4109.
doi: 10.1200/JCO.2016.67.2477 |
[32] |
CARLINO M S, LONG G V, SCHADENDORF D, et al. Outcomes by line of therapy and programmed death ligand 1 expression in patients with advanced melanoma treated with pembrolizumab or ipilimumab in KEYNOTE-006: a randomised clinical trial[J]. Eur J Cancer, 2018, 101: 236-243.
doi: 10.1016/j.ejca.2018.06.034 |
[33] |
CLEMENTE C G, MIHM M C Jr, BUFALINO R, et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma[J]. Cancer, 1996, 77(7): 1303-1310.
doi: 10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5 |
[34] |
TRUJILLO J A, SWEIS R F, BAO R Y, et al. Tcell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection[J]. Cancer Immunol Res, 2018, 6(9): 990-1000.
doi: 10.1158/2326-6066.CIR-18-0277 |
[35] |
AYERS M, LUNCEFORD J, NEBOZHYN M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade[J]. J Clin Investig, 2017, 127(8): 2930-2940.
doi: 10.1172/JCI91190 |
[36] |
BAO R Y, STAPOR D, LUKE J J. Molecular correlates and therapeutic targets in T cell-inflamed versus non-T cell-inflamed tumors across cancer types[J]. Genome Med, 2020, 12(1): 90.
doi: 10.1186/s13073-020-00787-6 |
[37] |
NG S B, BIGHAM A W, BUCKINGHAM K J, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome[J]. Nat Genet, 2010, 42(9): 790-793.
doi: 10.1038/ng.646 |
[38] |
LI X, ZHANG Q, SHI Q Z, et al. Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages[J]. J Autoimmun, 2017, 80: 85-94.
doi: 10.1016/j.jaut.2017.02.007 |
[39] |
CRISTESCU R, MOGG R, AYERS M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy[J]. Science, 2018, 362(6411): eaar3593.
doi: 10.1126/science.aar3593 |
[40] |
CHAKRABORTY A A, LAUKKA T, MYLLYKOSKI M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate[J]. Science, 2019, 363(6432): 1217-1222.
doi: 10.1126/science.aaw1026 |
[41] |
WCULEK S K, CUETO F J, MUJAL A M, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020, 20(1): 7-24.
doi: 10.1038/s41577-019-0210-z |
[42] |
WEISSMANN S, CLOOS P A, SIDOLI S, et al. The tumor suppressor CIC directly regulates MAPK pathway genes via histone deacetylation[J]. Cancer Res, 2018, 78(15): 4114-4125.
doi: 10.1158/0008-5472.CAN-18-0342 |
[43] |
LONG G V, GROB J J, NATHAN P, et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials[J]. Lancet Oncol, 2016, 17(12): 1743-1754.
doi: 10.1016/S1470-2045(16)30578-2 |
[44] | ASCIERTO P A, ROBERT C, LEWIS K, et al. 1102P Clinical benefit in BRAF V600 mutation-positive melanoma defined by programmed death ligand 1 (PD-L1) and/or lactate dehydrogenase (LDH) status: exploratory analyses from the IMspire150 study[J]. Ann Oncol, 2020, 31: S745. |
[45] |
RUOCCO M R, AVAGLIANO A, GRANATO G, et al. Metabolic flexibility in melanoma: a potential therapeutic target[J]. Semin Cancer Biol, 2019, 59: 187-207.
doi: 10.1016/j.semcancer.2019.07.016 |
[1] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[2] | 许宇辰, 张健, 王妍, 林瑾仪, 周宇红, 程蕾蕾, 葛均波. 托法替布治疗激素抵抗型免疫检查点抑制剂相关心肌炎的临床研究[J]. 中国癌症杂志, 2024, 34(4): 400-408. |
[3] | 郭晔, 张陈平. 复发/转移性头颈部鳞癌免疫检查点抑制剂治疗专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(4): 425-438. |
[4] | 张皓婷, 郑静, 傅梦姣, 周建英. 免疫治疗肺癌诱发甲状腺功能异常的研究进展[J]. 中国癌症杂志, 2023, 33(7): 701-706. |
[5] | 左学良, 陈志强, 董润雨, 王智雄, 蔡娟. 联合检测LDHA和PD-L1在晚期胃癌PD-1抑制剂疗效预测及预后评估中的价值[J]. 中国癌症杂志, 2023, 33(5): 460-468. |
[6] | 王妤, 毕楠. 放疗免疫调节效应研究的进展——从基础到临床[J]. 中国癌症杂志, 2023, 33(12): 1083-1091. |
[7] | 周腾, 张剑. 2023年ESMO乳腺癌治疗最新进展[J]. 中国癌症杂志, 2023, 33(11): 981-988. |
[8] | 中国抗癌协会肿瘤内分泌专业委员会. 妇科恶性肿瘤免疫治疗中国专家共识(2023年版)[J]. 中国癌症杂志, 2023, 33(10): 954-967. |
[9] | 许宇辰, 程蕾蕾, 王妍, 林瑾仪, 陈佳慧, 陈怡帆, 周宇红, 刘天舒, 葛均波. sST2在免疫检查点抑制剂相关不良反应风险预测中的价值[J]. 中国癌症杂志, 2022, 32(8): 712-718. |
[10] | 陈怡帆, 程蕾蕾, 沈毅辉, 张卉, 汪雪君, 许宇辰, 葛均波. 程序性死亡[蛋白]-1抑制剂诱导小鼠心肌炎模型的建立[J]. 中国癌症杂志, 2022, 32(7): 606-613. |
[11] | 苏春霞, 周彩存. 晚期非小细胞肺癌免疫治疗现状及未来方向[J]. 中国癌症杂志, 2022, 32(6): 478-486. |
[12] | 吴建辉, 储香玲, 王李强, 林心情, 谢晓鸿, 谢梦青, 赵静, 邓海怡, 杨伊霖, 邱桂焕, 周茂林, 孙霓, 李茹, 陈萤, 邓佳茜, 曾晨, 潘柏林, 秦茵茵, 刘明, 苏春霞, 周承志. 中国肺癌患者真实世界免疫检查点抑制剂相关性肺炎的流行病学分析[J]. 中国癌症杂志, 2022, 32(6): 469-477. |
[13] | 李 崴, 张山岭, 陶英杰, 王旭东. T细胞免疫代谢调控与免疫检查点抑制剂联合应用的现状及研究进展[J]. 中国癌症杂志, 2021, 31(7): 640-646. |
[14] | 李 媛. 病理学指导下的非小细胞肺癌个体化免疫治疗[J]. 中国癌症杂志, 2020, 30(10): 770-776. |
[15] | 方瑜佳, 周 娟, 苏春霞. 非小细胞肺癌肝转移免疫微环境及未来干预策略[J]. 中国癌症杂志, 2020, 30(10): 750-758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn