中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (7): 701-706.doi: 10.19401/j.cnki.1007-3639.2023.07.008
收稿日期:
2022-10-08
修回日期:
2022-11-24
出版日期:
2023-07-30
发布日期:
2023-08-10
通信作者:
周建英(ORCID: 0000-0002-8924-935X),硕士,主任医师,浙江大学附属一院呼吸与危重症医学科名誉主任。
作者简介:
张皓婷(ORCID: 0000-0001-9986-712X),硕士。
基金资助:
ZHANG Haoting1(), ZHENG Jing2, FU Mengjiao2, ZHOU Jianying2()
Received:
2022-10-08
Revised:
2022-11-24
Published:
2023-07-30
Online:
2023-08-10
Contact:
ZHOU Jianying.
文章分享
摘要:
免疫检查点抑制剂[主要是程序性死亡-1/程序性死亡配体-1(programmed death-1/programmed death ligand-1,PD-1/PD-L1)抑制剂]已经逐渐成为晚期肺癌最具有前景的治疗手段。但临床医师对于免疫相关不良反应仍缺乏足够认识,免疫相关甲状腺功能异常(immune-related thyroid dysfunction,irTD)作为常见的免疫相关不良反应之一,严重时可能会危及生命。本文从发病率、发病机制、预测生物标志物及治疗等方面对PD-1/PD-L1抑制剂治疗肺癌诱发的甲状腺功能异常进行探讨。
中图分类号:
张皓婷, 郑静, 傅梦姣, 周建英. 免疫治疗肺癌诱发甲状腺功能异常的研究进展[J]. 中国癌症杂志, 2023, 33(7): 701-706.
ZHANG Haoting, ZHENG Jing, FU Mengjiao, ZHOU Jianying. Research progress on thyroid dysfunction induced by immunotherapy for lung cancer[J]. China Oncology, 2023, 33(7): 701-706.
表1
多临床试验中肺癌患者发生irTD的比较"
Clinical trial | Histological subtype | Case N | Treatment | Incidence of irTD all grade/% | Incidence of irTD grade 3%-5/% | ||||
---|---|---|---|---|---|---|---|---|---|
Hypo-thyroidism | Hyper-thyroidism | Thyroiditis | Hypo-thyroidism | Hyper-thyroidism | Thyroiditis | ||||
Checkmate-057[ | Non-squamous NSCLC | 292 | Nivolumab | 7.0 | 1.0 | 0.3 | 0.0 | 0.0 | 0.0 |
Checkmate-017[ | Squamous NSCLC | 135 | Nivolumab | 4.0 | NA | NA | 0.0 | NA | NA |
Keynote-024[ | NSCLC | 154 | Pembrolizumab | 9.1 | 7.8 | 2.6 | 0.0 | 0.0 | 0.0 |
Checkmate-026[ | NSCLC | 267 | Nivolumab | 6.4 | NA | NA | 0.0 | NA | NA |
Keynote-042[ | NSCLC | 636 | Pembrolizumab | 12.0 | 6.0 | 2.0 | 0.2 | 0.2 | 0.0 |
Keynote-042[ | NSCLC | 128 | Pembrolizumab | 11.7 | 5.5 | 1.6 | 0.0 | 0.8 | 0.0 |
CheckMate 078[ | NSCLC | 337 | Nivolumab | 4.0 | 3.0 | 0.3 | 0.0 | 0.0 | 0.0 |
Antonia, et al[ | NSCLC | 476 | Durvalumab | 9.5 | 2.7 | NA | 0.2 | 0.0 | NA |
JAVELIN Lung 200[ | NSCLC | 396 | Avelumab | 5.0 | 1.0 | 0.3 | 0.3 | NA | NA |
Keynote-407[ | Squamous NSCLC | 278 | Pembrolizumab + carboplatin + nab-paclitaxel | 7.9 | 7.2 | 1.1 | 0.4 | 0.4 | 0.4 |
Keynote-189[ | Non-squamous NSCLC | 405 | Pembrolizumab + platinum + pemetrexed | 6.7 | 4.0 | 0.2 | 0.5 | 0.0 | 0.0 |
IMpower130[ | Non-squamous NSCLC | 473 | Atezolizumab + carboplatin + nab-paclitaxel | 11.2 | 4.9 | NA | 0.4 | 0.2 | NA |
IMpower132[ | Non-squamous NSCLC | 292 | Atezolizumab + carboplatin/cisplatin + pemetrexed | 8.2 | 2.4 | NA | 0.3 | 0.3 | NA |
CASPIAN[ | ES-SCLC | 265 | Durvalumab + platinum + etoposide | 9.0 | 8.0 | NA | 0.0 | 0.0 | NA |
IMpower133[ | ES-SCLC | 198 | Atezolizumab + carboplatin + etoposide | 12.6 | 5.6 | NA | 0.0 | 0.0 | NA |
Checkmate-227[ | NSCLC | 396 | Nivolumab + ipilimumab | 11.6 | NA | NA | 0.3 | NA | NA |
396 | Nivolumab | 6.4 | NA | NA | 0.3 | NA | NA | ||
Checkmate-9LA[ | NSCLC | 358 | Nivolumab + ipilimumab + platinum | 16.0 | NA | NA | 0.3 | NA | NA |
Keynote-598[ | NSCLC | 282 | Pembrolizumab + ipilimumab | 15.2 | 8.9 | 1.8 | 0.4 | 0.4 | 0.4 |
281 | Pembrolizumab | 12.1 | 6.0 | 1.1 | 0.4 | 0.0 | 0.0 | ||
Checkmate-032[ | SCLC | 96 | Nivolumab + ipilimumab | 8.3 | 7.3 | NA | 0.0 | 1.0 | NA |
147 | Nivolumab | 4.1 | 2.0 | NA | 0.0 | 0.0 | NA |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] | 周彩存, 王洁, 王宝成, 等. 中国非小细胞肺癌免疫检查点抑制剂治疗专家共识(2020年版)[J]. 中国肺癌杂志, 2021, 24(4): 217-235. |
ZHOU C C, WANG J, WANG B C, et al. Chinese experts consensus on immune checkpoint inhibitors for non-small cell lung cancer (2020 version)[J]. Chin J Lung Cancer, 2021, 24(4): 217-235. | |
[3] |
BORGHAEI H, PAZ-ARES L, HORN L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small cell lung cancer[J]. N Engl J Med, 2015, 373(17): 1627-1639.
doi: 10.1056/NEJMoa1507643 |
[4] |
BRAHMER J, RECKAMP K L, BAAS P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(2): 123-135.
doi: 10.1056/NEJMoa1504627 |
[5] |
MOK T S K, WU Y L, KUDABA I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial[J]. Lancet, 2019, 393(10183): 1819-1830.
doi: 10.1016/S0140-6736(18)32409-7 |
[6] |
READY N E, OTT P A, HELLMANN M D, et al. Nivolumab monotherapy and nivolumab plus ipilimumab in recurrent small cell lung cancer: results from the CheckMate 032 randomized cohort[J]. J Thorac Oncol, 2020, 15(3): 426-435.
doi: S1556-0864(19)33531-2 pmid: 31629915 |
[7] |
HELLMANN M D, PAZ-ARES L, BERNABE CARO R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer[J]. N Engl J Med, 2019, 381(21): 2020-2031.
doi: 10.1056/NEJMoa1910231 |
[8] | CARBONE D P. First-line nivolumab in stage Ⅳ or recurrent non-small cell lung cancer[J]. Oncol Times, 2017, 39(17): 28-29. |
[9] |
RECK M, RODRÍGUEZ-ABREU D, ROBINSON A G, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small cell lung cancer[J]. N Engl J Med, 2016, 375(19): 1823-1833.
doi: 10.1056/NEJMoa1606774 |
[10] |
WU Y L, LU S, CHENG Y, et al. Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced NSCLC: CheckMate 078 randomized phase Ⅲ clinical trial[J]. J Thorac Oncol, 2019, 14(5): 867-875.
doi: 10.1016/j.jtho.2019.01.006 |
[11] |
WU Y L, ZHANG L, FAN Y, et al. Randomized clinical trial of pembrolizumab vs chemotherapy for previously untreated Chinese patients with PD-L1-positive locally advanced or metastatic non-small cell lung cancer: KEYNOTE-042 China study[J]. Int J Cancer, 2021, 148(9): 2313-2320.
doi: 10.1002/ijc.v148.9 |
[12] |
ANTONIA S J, VILLEGAS A, DANIEL D, et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small cell lung cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929.
doi: 10.1056/NEJMoa1709937 |
[13] |
BARLESI F, VANSTEENKISTE J, SPIGEL D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study[J]. Lancet Oncol, 2018, 19(11): 1468-1479.
doi: 10.1016/S1470-2045(18)30673-9 |
[14] |
GANDHI L, RODRÍGUEZ-ABREU D, GADGEEL S, et al. Pembrolizumab plus chemotherapy in metastatic non-small cell lung cancer[J]. N Engl J Med, 2018, 378(22): 2078-2092.
doi: 10.1056/NEJMoa1801005 |
[15] |
NISHIO M, BARLESI F, WEST H, et al. Atezolizumab plus chemotherapy for first-line treatment of nonsquamous NSCLC: results from the randomized phase 3 IMpower132 trial[J]. J Thorac Oncol, 2021, 16(4): 653-664.
doi: 10.1016/j.jtho.2020.11.025 |
[16] |
PAZ-ARES L, DVORKIN M, CHEN Y B, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2019, 394(10212): 1929-1939.
doi: 10.1016/S0140-6736(19)32222-6 |
[17] |
PAZ-ARES L, LUFT A, VICENTE D, et al. Pembrolizumab plus chemotherapy for squamous non-small cell lung cancer[J]. N Engl J Med, 2018, 379(21): 2040-2051.
doi: 10.1056/NEJMoa1810865 |
[18] |
WEST H, MCCLEOD M, HUSSEIN M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2019, 20(7): 924-937.
doi: 10.1016/S1470-2045(19)30167-6 |
[19] |
BOYER M, ŞENDUR M A N, RODRÍGUEZ-ABREU D, et al. Pembrolizumab plus ipilimumab or placebo for metastatic non-small cell lung cancer with PD-L1 tumor proportion score ≥ 50%: randomized, double-blind phase Ⅲ KEYNOTE-598 study[J]. J Clin Oncol, 2021, 39(21): 2327-2338.
doi: 10.1200/JCO.20.03579 |
[20] |
HORN L, MANSFIELD A S, SZCZĘSNA A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small cell lung cancer[J]. N Engl J Med, 2018, 379(23): 2220-2229.
doi: 10.1056/NEJMoa1809064 |
[21] |
PROF, LUIS, PAZ-ARES, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(2): 198-211.
doi: 10.1016/S1470-2045(20)30641-0 |
[22] | National Cancer Institute. Protocol development cancer therapy evaluation program[EB/OL]. (2017-11-27)[2023-04-28]. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm. |
[23] |
KHAN U, RIZVI H, SANO D, et al. Nivolumab induced myxedema crisis[J]. J Immunother Cancer, 2017, 5: 13.
doi: 10.1186/s40425-017-0213-x pmid: 28239466 |
[24] |
ZHOU N, VELEZ M A, BACHRACH B, et al. Immune checkpoint inhibitor induced thyroid dysfunction is a frequent event post-treatment in NSCLC[J]. Lung Cancer, 2021, 161: 34-41.
doi: 10.1016/j.lungcan.2021.08.009 pmid: 34507111 |
[25] |
YAMAZAKI H, IWASAKI H, YAMASHITA T, et al. Potential risk factors for nivolumab-induced thyroid dysfunction[J]. In Vivo, 2017, 31(6): 1225-1228.
pmid: 29102951 |
[26] |
OSORIO J C, NI A, CHAFT J E, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small cell lung cancer[J]. Ann Oncol, 2017, 28(3): 583-589.
doi: 10.1093/annonc/mdw640 |
[27] |
KOTWAL A, GUSTAFSON M P, BORNSCHLEGL S, et al. Immune checkpoint inhibitor-induced thyroiditis is associated with increased intrathyroidal T lymphocyte subpopulations[J]. Thyroid, 2020, 30(10): 1440-1450.
doi: 10.1089/thy.2020.0075 |
[28] |
TORIMOTO K, OKADA Y, NAKAYAMADA S, et al. Anti-PD-1 antibody therapy induces Hashimoto’s disease with an increase in peripheral blood follicular helper T cells[J]. Thyroid, 2017, 27(10): 1335-1336.
doi: 10.1089/thy.2017.0062 |
[29] |
KIMBARA S, FUJIWARA Y, IWAMA S, et al. Association of antithyroglobulin antibodies with the development of thyroid dysfunction induced by nivolumab[J]. Cancer Sci, 2018, 109(11): 3583-3590.
doi: 10.1111/cas.2018.109.issue-11 |
[30] |
YAMAUCHI I, YASODA A, MATSUMOTO S, et al. Incidence, features, and prognosis of immune-related adverse events involving the thyroid gland induced by nivolumab[J]. PLoS One, 2019, 14(5): e0216954.
doi: 10.1371/journal.pone.0216954 |
[31] |
SABINI E, SFRAMELI A, MARINÒ M. A case of drug-induced Graves’ orbitopathy after combination therapy with tremelimumab and durvalumab[J]. J Endocrinol Invest, 2018, 41(7): 877-878.
doi: 10.1007/s40618-018-0906-0 |
[32] |
ZHAN L, FENG H F, LIU H Q, et al. Immune checkpoint inhibitors-related thyroid dysfunction: epidemiology, clinical presentation, possible pathogenesis, and management[J]. Front Endocrinol (Lausanne), 2021, 12: 649863.
doi: 10.3389/fendo.2021.649863 |
[33] |
MAZARICO I, CAPEL I, GIMÉNEZ-PALOP O, et al. Low frequency of positive antithyroid antibodies is observed in patients with thyroid dysfunction related to immune check point inhibitors[J]. J Endocrinol Invest, 2019, 42(12): 1443-1450.
doi: 10.1007/s40618-019-01058-x pmid: 31093955 |
[34] |
YAMAUCHI I, SAKANE Y, FUKUDA Y, et al. Clinical features of nivolumab-induced thyroiditis: a case series study[J]. Thyroid, 2017, 27(7): 894-901.
doi: 10.1089/thy.2016.0562 pmid: 28537531 |
[35] |
DELIVANIS D A, GUSTAFSON M P, BORNSCHLEGL S, et al. Pembrolizumab-induced thyroiditis: comprehensive clinical review and insights into underlying involved mechanisms[J]. J Clin Endocrinol Metab, 2017, 102(8): 2770-2780.
doi: 10.1210/jc.2017-00448 pmid: 28609832 |
[36] |
KURIMOTO C, INABA H, ARIYASU H, et al. Predictive and sensitive biomarkers for thyroid dysfunctions during treatment with immune-checkpoint inhibitors[J]. Cancer Sci, 2020, 111(5): 1468-1477.
doi: 10.1111/cas.v111.5 |
[37] |
KRIEG C, NOWICKA M, GUGLIETTA S, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy[J]. Nat Med, 2018, 24(2): 144-153.
doi: 10.1038/nm.4466 pmid: 29309059 |
[38] |
MAEKURA T, NAITO M, TAHARA M, et al. Predictive factors of nivolumab-induced hypothyroidism in patients with non-small cell lung cancer[J]. In Vivo, 2017, 31(5): 1035-1039.
pmid: 28882978 |
[39] |
YOON J H, HONG A R, KIM H K, et al. Characteristics of immune-related thyroid adverse events in patients treated with PD-1/PD-L1 inhibitors[J]. Endocrinol Metab (Seoul), 2021, 36(2): 413-423.
doi: 10.3803/EnM.2020.906 pmid: 33820396 |
[40] | DE FILETTE J, ANDREESCU C E, COOLS F, et al. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors[J]. Horm Metab, 2019, 51(3): 145-156. |
[41] |
KOTWAL A, KOTTSCHADE L, RYDER M. PD-L1 inhibitor-induced thyroiditis is associated with better overall survival in cancer patients[J]. Thyroid, 2020, 30(2): 177-184.
doi: 10.1089/thy.2019.0250 pmid: 31813343 |
[42] |
CAMPREDON P, MOULY C, LUSQUE A, et al. Incidence of thyroid dysfunctions during treatment with nivolumab for non-small cell lung cancer: retrospective study of 105 patients[J]. Presse Med, 2019, 48(4): e199-e207.
doi: 10.1016/j.lpm.2018.10.019 |
[43] | POLLACK R, ASHASH A, CAHN A, et al. Immune checkpoint inhibitor-induced thyroid dysfunction is associated with higher body mass index[J]. J Clin Endocrinol Metab, 2020, 105(10): dgaa458. |
[44] |
D'AIELLO A, LIN J, GUCALP R, et al. Thyroid dysfunction in lung cancer patients treated with immune checkpoint inhibitors (ICIs): outcomes in a multiethnic urban cohort[J]. Cancers (Basel), 2021, 13(6): 1464.
doi: 10.3390/cancers13061464 |
[45] | 彭智, 袁家佳, 王正航, 等. ASCO/NCCN免疫治疗毒性管理指南解读[J]. 肿瘤综合治疗电子杂志, 2018, 4(2): 38-47. |
PENG Z, YUAN J J, WANG Z H, et al. Comments on ASCO/NCCN management guidelines of toxicities from immunotherapy[J]. J Multidiscip Cancer Manag Electron Version, 2018, 4(2): 38-47. |
[1] | 王蔓莉, 陈辉, 段智, 许奇美, 李贞. 普列克底物蛋白2/miR-196a信号轴介导肿瘤微环境中肺癌细胞的通讯机制研究[J]. 中国癌症杂志, 2024, 34(7): 628-638. |
[2] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[3] | 钱斌, 陈海泉. 2023年度肺癌外科治疗领域重要进展[J]. 中国癌症杂志, 2024, 34(4): 335-339. |
[4] | 林艺聪, 王悦, 薛倩倩, 郑强, 金燕, 黄子凌, 李媛. EGFR T790M突变非小细胞肺癌患者的临床病理学、免疫微环境特征及对预后预测的意义[J]. 中国癌症杂志, 2024, 34(4): 368-379. |
[5] | 许宇辰, 张健, 王妍, 林瑾仪, 周宇红, 程蕾蕾, 葛均波. 托法替布治疗激素抵抗型免疫检查点抑制剂相关心肌炎的临床研究[J]. 中国癌症杂志, 2024, 34(4): 400-408. |
[6] | 郭晔, 张陈平. 复发/转移性头颈部鳞癌免疫检查点抑制剂治疗专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(4): 425-438. |
[7] | 姜梦琦, 韩昱晨, 傅小龙. 基于人工智能的H-E染色全切片病理学图像分析在肺癌研究中的进展[J]. 中国癌症杂志, 2024, 34(3): 306-315. |
[8] | 吴晗, 杨章孺, 冯雯, 曾琬琴, 郭金栋, 李洪选, 王常禄, 王家明, 吕长兴, 张琴, 余雯, 蔡旭伟, 傅小龙. 多原发性早期肺癌立体定向放射治疗后疗效及患者预后分析[J]. 中国癌症杂志, 2023, 33(9): 844-856. |
[9] | 张玲玲, 王湘漪, 魏星, 林莉, 汤传昊, 梁军. 止吐用低频电刺激仪防治非小细胞肺癌患者化疗导致恶心呕吐的回顾性研究[J]. 中国癌症杂志, 2023, 33(8): 776-781. |
[10] | 左学良, 陈志强, 董润雨, 王智雄, 蔡娟. 联合检测LDHA和PD-L1在晚期胃癌PD-1抑制剂疗效预测及预后评估中的价值[J]. 中国癌症杂志, 2023, 33(5): 460-468. |
[11] | 吴晶, 周娟, 苏春霞. 肺癌脂肪酸代谢重编程的研究进展[J]. 中国癌症杂志, 2023, 33(5): 517-526. |
[12] | 苏春霞, 周彩存. 2022年度肺癌领域重要临床研究进展[J]. 中国癌症杂志, 2023, 33(3): 218-227. |
[13] | 王妤, 毕楠. 放疗免疫调节效应研究的进展——从基础到临床[J]. 中国癌症杂志, 2023, 33(12): 1083-1091. |
[14] | 周腾, 张剑. 2023年ESMO乳腺癌治疗最新进展[J]. 中国癌症杂志, 2023, 33(11): 981-988. |
[15] | 中国抗癌协会肿瘤内分泌专业委员会. 妇科恶性肿瘤免疫治疗中国专家共识(2023年版)[J]. 中国癌症杂志, 2023, 33(10): 954-967. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn