中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (6): 487-498.doi: 10.19401/j.cnki.1007-3639.2022.06.003
收稿日期:
2022-04-15
修回日期:
2022-05-16
出版日期:
2022-06-30
发布日期:
2022-07-21
通信作者:
朱正飞
E-mail:nancyyusilai@163.com;fuscczzf@163.com
作者简介:
虞思来(ORCID:0000-0002-0293-3782),复旦大学八年制在读。E-mail: nancyyusilai@163.com
YU Silai1()(
), NI Jianjiao2, ZHU Zhengfei2,3(
)(
)
Received:
2022-04-15
Revised:
2022-05-16
Published:
2022-06-30
Online:
2022-07-21
Contact:
ZHU Zhengfei
E-mail:nancyyusilai@163.com;fuscczzf@163.com
文章分享
摘要:
PACIFIC研究拉开了不可手术局部晚期非小细胞肺癌(locally advanced non-small cell lung cancer,LA-NSCLC)免疫治疗新时代的序幕,同时也提出了如何将放化疗与免疫治疗有机整合及进一步优化的新命题。本文对不可手术LA-NSCLC的治疗进展进行综述,旨在探讨免疫治疗背景下LA-NSCLC的研究现况和未来方向。本文将汇总PACIFIC研究的更新数据和这个模式在特殊人群,如老年、程序性死亡[蛋白]配体-1(programmed death ligand-1,PD-L1)阴性、表皮生长因子受体(epidermal growth factor receptor,EGFR)基因突变的研究进展,探讨放化疗和免疫治疗的最佳时序安排。回顾放疗在剂量分割、靶区勾画、射线选择方面的技术进步和实施优化的探索,并展望其在免疫治疗时代的应用前景。
中图分类号:
虞思来, 倪建佼, 朱正飞. 免疫治疗时代不可手术局部晚期非小细胞肺癌的治疗:现状与展望[J]. 中国癌症杂志, 2022, 32(6): 487-498.
YU Silai, NI Jianjiao, ZHU Zhengfei. Treatment of unresectable locally advanced non-small cell lung cancer in the era of immunotherapy: status and prospects[J]. China Oncology, 2022, 32(6): 487-498.
[1] | ZHENG R S,, ZHANG S W,, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. |
[2] |
EBERHARDT W E E,, DE RUYSSCHER D,, WEDER W, et al. 2nd ESMO consensus conference in lung cancer: locally advanced stage Ⅲ non-small cell lung cancer[J]. Ann Oncol, 2015, 26(8): 1573-1588.
doi: 10.1093/annonc/mdv187 |
[3] |
ANTONIA S J,, VILLEGAS A,, DANIEL D, et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small cell lung cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929.
doi: 10.1056/NEJMoa1709937 |
[4] | BANG A,, SCHOENFELD J D,, SUN A Y. PACIFIC: shifting tides in the treatment of locally advanced non-small cell lung cancer[J]. Transl Lung Cancer Res, 2019, 8(Suppl 2): S139-S146. |
[5] |
FAIVRE-FINN C,, VICENTE D,, KURATA T, et al. Four-year survival with durvalumab after chemoradiotherapy in stage Ⅲ NSCLC-an update from the PACIFIC trial[J]. J Thorac Oncol, 2021, 16(5): 860-867.
doi: 10.1016/j.jtho.2020.12.015 |
[6] |
SPIGEL D R,, FAIVRE-FINN C,, GRAY J E, et al. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage Ⅲ non-small cell lung cancer[J]. J Clin Oncol, 2022, 40(12): 1301-1311.
doi: 10.1200/JCO.21.01308 |
[7] |
NAIDOO J,, VANSTEENKISTE J F,, FAIVRE-FINN C, et al. Characterizing immune-mediated adverse events with durvalumab in patients with unresectable stage Ⅲ NSCLC: a post-hoc analysis of the PACIFIC trial[J]. Lung Cancer, 2022, 166: 84-93.
doi: 10.1016/j.lungcan.2022.02.003 |
[8] |
PANJE C M,, LUPATSCH J E,, BARBIER M, et al. A cost-effectiveness analysis of consolidation immunotherapy with durvalumab in stage Ⅲ NSCLC responding to definitive radiochemotherapy in Switzerland[J]. Ann Oncol, 2020, 31(4): 501-506.
doi: 10.1016/j.annonc.2020.01.007 |
[9] |
WANG Y,, ZHANG T,, HUANG Y L, et al. Real-world safety and efficacy of consolidation durvalumab after chemoradiation therapy for stage Ⅲ non-small cell lung cancer: a systematic review and meta-analysis[J]. Int J Radiat Oncol Biol Phys, 2022, 112(5): 1154-1164.
doi: 10.1016/j.ijrobp.2021.12.150 |
[10] |
OFFIN M,, SHAVERDIAN N,, RIMNER A, et al. Clinical outcomes, local-regional control and the role for metastasis-directed therapies in stage Ⅲ non-small cell lung cancers treated with chemoradiation and durvalumab[J]. Radiother Oncol, 2020, 149: 205-211.
doi: 10.1016/j.radonc.2020.04.047 |
[11] |
SOCINSKI M A,, ÖZGÜROĞLU M,, VILLEGAS A, et al. Durvalumab after concurrent chemoradiotherapy in elderly patients with unresectable stage Ⅲ non-small cell lung cancer (PACIFIC)[J]. Clin Lung Cancer, 2021, 22(6): 549-561.
doi: 10.1016/j.cllc.2021.05.009 |
[12] |
KEIR M E,, FRANCISCO L M,, SHARPE A H. PD-1 and its ligands in T-cell immunity[J]. Curr Opin Immunol, 2007, 19(3): 309-314.
doi: 10.1016/j.coi.2007.04.012 |
[13] |
KEIR M E,, BUTTE M J,, FREEMAN G J, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704.
doi: 10.1146/annurev.immunol.26.021607.090331 |
[14] |
PAZ-ARES L,, SPIRA A,, RABEN D, et al. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage Ⅲ non-small cell lung cancer in the PACIFIC trial[J]. Ann Oncol, 2020, 31(6): 798-806.
doi: 10.1016/j.annonc.2020.03.287 |
[15] |
TUFMAN A,, NEUMANN J,, MANAPOV F, et al. Prognostic and predictive value of PD-L1 expression and tumour infiltrating lymphocytes (TiLs) in locally advanced NSCLC treated with simultaneous radiochemotherapy in the randomized, multicenter, phase Ⅲ German intergroup lung trial (GILT)[J]. Lung Cancer, 2021, 160: 17-27.
doi: 10.1016/j.lungcan.2021.07.008 |
[16] | DOVEDI S J,, ADLARD A L,, LIPOWSKA-BHALLA G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade[J]. Cancer Res, 2014, 74(19): 5458-5468. |
[17] |
AREDO J V,, MAMBETSARIEV I,, HELLYER J A, et al. Durvalumab for stage Ⅲ EGFR-mutated NSCLC after definitive chemoradiotherapy[J]. J Thorac Oncol, 2021, 16(6): 1030-1041.
doi: 10.1016/j.jtho.2021.01.1628 |
[18] |
TO K K W,, FONG W,, CHO W C S. Immunotherapy in treating EGFR-mutant lung cancer: current challenges and new strategies[J]. Front Oncol, 2021, 11: 635007.
doi: 10.3389/fonc.2021.635007 |
[19] |
BORGHAEI H,, PAZ-ARES L,, HORN L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small cell lung cancer[J]. N Engl J Med, 2015, 373(17): 1627-1639.
doi: 10.1056/NEJMoa1507643 |
[20] |
LEE C K,, MAN J,, LORD S, et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis[J]. JAMA Oncol, 2018, 4(2): 210-216.
doi: 10.1001/jamaoncol.2017.4427 |
[21] |
HELLYER J A,, AREDO J V,, DAS M, et al. Role of consolidation durvalumab in patients with EGFR- and HER2-mutant unresectable stage Ⅲ NSCLC[J]. J Thorac Oncol, 2021, 16(5): 868-872.
doi: 10.1016/j.jtho.2020.12.020 |
[22] |
XING L G,, WU G,, WANG L H, et al. Erlotinib versus etoposide/cisplatin with radiation therapy in unresectable stage Ⅲ epidermal growth factor receptor mutation-positive non-small cell lung cancer: a multicenter, randomized, open-label, phase 2 trial[J]. Int J Radiat Oncol Biol Phys, 2021, 109(5): 1349-1358.
doi: 10.1016/j.ijrobp.2020.11.026 |
[23] |
AKAMATSU H,, MURAKAMI H,, HARADA H, et al. Gefitinib with concurrent thoracic radiotherapy in unresectable locally advanced NSCLC with EGFR mutation; west Japan oncology group 6911L[J]. J Thorac Oncol, 2021, 16(10): 1745-1752.
doi: 10.1016/j.jtho.2021.05.019 |
[24] |
HOTTA K,, SAEKI S,, YAMAGUCHI M, et al. Gefitinib induction followed by chemoradiotherapy in EGFR-mutant, locally advanced non-small cell lung cancer: LOGIK0902/OLCSG0905 phase Ⅱ study[J]. ESMO Open, 2021, 6(4): 100191.
doi: 10.1016/j.esmoop.2021.100191 |
[25] |
DURM G A,, JABBOUR S K,, ALTHOUSE S K, et al. A phase 2 trial of consolidation pembrolizumab following concurrent chemoradiation for patients with unresectable stage Ⅲ non-small cell lung cancer: Hoosier Cancer Research Network LUN 14-179[J]. Cancer, 2020, 126(19): 4353-4361.
doi: 10.1002/cncr.33083 |
[26] |
HUNG A,, LEE K M,, LYNCH J A, et al. Chemoradiation treatment patterns among United States Veteran Health Administration patients with unresectable stage Ⅲ non-small cell lung cancer[J]. BMC Cancer, 2021, 21(1): 824.
doi: 10.1186/s12885-021-08577-y |
[27] |
ZHANG T,, BI N,, ZHOU Z M, et al. The impact of age on the survival outcomes and risk of radiation pneumonitis in patients with unresectable locally advanced non-small cell lung cancer receiving chemoradiotherapy[J]. J Thorac Dis, 2020, 12(8): 4347-4356.
doi: 10.21037/jtd-20-2137 |
[28] | SENAN S,, OKAMOTO I,, LEE G W, et al. Design and rationale for a phase Ⅲ, randomized, placebo-controlled trial of durvalumab with or without tremelimumab after concurrent chemoradiotherapy for patients with limited-stage small cell lung cancer: the ADRIATIC study[J]. Clin Lung Cancer, 2020, 21(2): e84-e88. |
[29] |
JAZIEH A R,, ONAL H C,, TAN D S W, et al. Real-world treatment patterns and clinical outcomes in patients with stage Ⅲ NSCLC: results of KINDLE, a multicountry observational study[J]. J Thorac Oncol, 2021, 16(10): 1733-1744.
doi: 10.1016/j.jtho.2021.05.003 |
[30] |
ZHOU Q,, CHEN M,, WU G, et al. GEMSTONE-301: a phase Ⅲ clinical trial of CS1001 as consolidation therapy in patients with locally advanced/unresectable (stage Ⅲ) non-small cell lung cancer (NSCLC) who did not have disease progression after prior concurrent/sequential chemoradiotherapy[J]. Transl Lung Cancer Res, 2020, 9(5): 2008-2015.
doi: 10.21037/tlcr-20-608 |
[31] |
MYERS C J,, LU B. Decreased survival after combining thoracic irradiation and an anti-PD-1 antibody correlated with increased T-cell infiltration into cardiac and lung tissues[J]. Int J Radiat Oncol Biol Phys, 2017, 99(5): 1129-1136.
doi: 10.1016/j.ijrobp.2017.06.2452 |
[32] |
DU S S,, ZHOU L,, ALEXANDER G S, et al. PD-1 modulates radiation-induced cardiac toxicity through cytotoxic T lymphocytes[J]. J Thorac Oncol, 2018, 13(4): 510-520.
doi: 10.1016/j.jtho.2017.12.002 |
[33] |
PETERS S,, FELIP E,, DAFNI U, et al. Safety evaluation of nivolumab added concurrently to radiotherapy in a standard first line chemo-radiotherapy regimen in stage Ⅲ non-small cell lung cancer-the ETOP NICOLAS trial[J]. Lung Cancer, 2019, 133: 83-87.
doi: 10.1016/j.lungcan.2019.05.001 |
[34] |
PILLAI R N,, BEHERA M,, OWONIKOKO T K, et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: a systematic analysis of the literature[J]. Cancer, 2018, 124(2): 271-277.
doi: 10.1002/cncr.31043 |
[35] |
PETERS S,, FELIP E,, DAFNI U, et al. Progression-free and overall survival for concurrent nivolumab with standard concurrent chemoradiotherapy in locally advanced stage ⅢA-B NSCLC: results from the European thoracic oncology platform NICOLAS phase Ⅱ trial (European thoracic oncology platform 6-14)[J]. J Thorac Oncol, 2021, 16(2): 278-288.
doi: 10.1016/j.jtho.2020.10.129 |
[36] |
LIN S H,, LIN Y,, YAO L Y, et al. Phase Ⅱ trial of concurrent atezolizumab with chemoradiation for unresectable NSCLC[J]. J Thorac Oncol, 2020, 15(2): 248-257.
doi: 10.1016/j.jtho.2019.10.024 |
[37] |
JABBOUR S K,, BERMAN A T,, DECKER R H, et al. Phase 1 trial of pembrolizumab administered concurrently with chemoradiotherapy for locally advanced non-small cell lung cancer: a nonrandomized controlled trial[J]. JAMA Oncol, 2020, 6(6): 848-855.
doi: 10.1001/jamaoncol.2019.6731 |
[38] | JABBOUR S K,, LEE K H,, FROST N, et al. Pembrolizumab plus concurrent chemoradiation therapy in patients with unresectable, locally advanced, stage Ⅲ non-small cell lung cancer: the phase 2 KEYNOTE-799 nonrandomized trial[J]. JAMA Oncol, 2021, 7(9): 1-9. |
[39] | LEE Y J,, AUH S L,, WANG Y G, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment[J]. Blood, 2009, 114(3): 589-595. |
[40] |
GOUGH M J,, CRITTENDEN M R,, SARFF M, et al. Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice[J]. J Immunother, 2010, 33(8): 798-809.
doi: 10.1097/CJI.0b013e3181ee7095 |
[41] |
DEMARIA S,, KAWASHIMA N,, YANG A M, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer[J]. Clin Cancer Res, 2005, 11(2 Pt 1): 728-734.
doi: 10.1158/1078-0432.728.11.2 |
[42] |
FORDE P M,, CHAFT J E,, SMITH K N, et al. Neoadjuvant PD-1 blockade in resectable lung cancer[J]. N Engl J Med, 2018, 378(21): 1976-1986.
doi: 10.1056/NEJMoa1716078 |
[43] |
YOST K E,, SATPATHY A T,, WELLS D K, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade[J]. Nat Med, 2019, 25(8): 1251-1259.
doi: 10.1038/s41591-019-0522-3 |
[44] | KATO R,, HAYASHI H,, CHIBA Y, et al. Propensity score-weighted analysis of chemotherapy after PD-1 inhibitors versus chemotherapy alone in patients with non-small cell lung cancer (WJOG10217L)[J]. J Immunother Cancer, 2020, 8(1): e000350. |
[45] |
SCHVARTSMAN G,, PENG S A,, BIS G, et al. Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer[J]. Lung Cancer, 2017, 112: 90-95.
doi: 10.1016/j.lungcan.2017.07.034 |
[46] |
ROSS H J,, KOZONO D E,, URBANIC J J, et al. AFT-16: Phase Ⅱ trial of neoadjuvant and adjuvant atezolizumab and chemoradiation (CRT) for stage Ⅲ non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2021, 39(15_suppl): 8513.
doi: 10.1200/JCO.2021.39.15_suppl.8513 |
[47] |
BRAHMER J R. Harnessing the immune system for the treatment of non-small cell lung cancer[J]. J Clin Oncol, 2013, 31(8): 1021-1028.
doi: 10.1200/JCO.2012.45.8703 |
[48] |
SWANN J B,, SMYTH M J. Immune surveillance of tumors[J]. J Clin Invest, 2007, 117(5): 1137-1146.
doi: 10.1172/JCI31405 |
[49] |
APETOH L,, GHIRINGHELLI F,, TESNIERE A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy[J]. Nat Med, 2007, 13(9): 1050-1059.
doi: 10.1038/nm1622 |
[50] |
FORMENTI S C,, DEMARIA S. Combining radiotherapy and cancer immunotherapy: a paradigm shift[J]. J Natl Cancer Inst, 2013, 105(4): 256-265.
doi: 10.1093/jnci/djs629 |
[51] |
LADBURY C J,, RUSTHOVEN C G,, CAMIDGE D R, et al. Impact of radiation dose to the host immune system on tumor control and survival for stage Ⅲ non-small cell lung cancer treated with definitive radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2019, 105(2): 346-355.
doi: 10.1016/j.ijrobp.2019.05.064 |
[52] |
MATTES M D,, EUBANK T D,, ALMUBARAK M, et al. A prospective trial evaluating the safety and systemic response from the concurrent use of radiation therapy with checkpoint inhibitor immunotherapy in metastatic non-small cell lung cancer[J]. Clin Lung Cancer, 2021, 22(4): 268-273.
doi: 10.1016/j.cllc.2021.01.012 |
[53] |
VENKATESULU B P,, MALLICK S,, LIN S H, et al. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors[J]. Crit Rev Oncol Hematol, 2018, 123: 42-51.
doi: 10.1016/j.critrevonc.2018.01.003 |
[54] |
TANG C,, LIAO Z X,, GOMEZ D, et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes[J]. Int J Radiat Oncol Biol Phys, 2014, 89(5): 1084-1091.
doi: 10.1016/j.ijrobp.2014.04.025 |
[55] |
CAMPIAN J L,, YE X B,, BROCK M, et al. Treatment-related lymphopenia in patients with stage Ⅲ non-small cell lung cancer[J]. Cancer Invest, 2013, 31(3): 183-188.
doi: 10.3109/07357907.2013.767342 |
[56] |
CHO O,, OH Y T,, CHUN M, et al. Radiation-related lymphopenia as a new prognostic factor in limited-stage small cell lung cancer[J]. Tumour Biol, 2016, 37(1): 971-978.
doi: 10.1007/s13277-015-3888-y |
[57] |
FARHOOD B,, NAJAFI M,, MORTEZAEE K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review[J]. J Cell Physiol, 2019, 234(6): 8509-8521.
doi: 10.1002/jcp.27782 |
[58] |
BÖTTCHER J P,, SOUSA C R E. The role of type 1 conventional dendritic cells in cancer immunity[J]. Trends Cancer, 2018, 4(11): 784-792.
doi: 10.1016/j.trecan.2018.09.001 |
[59] |
ABRAVAN A,, FAIVRE-FINN C,, KENNEDY J, et al. Radiotherapy-related lymphopenia affects overall survival in patients with lung cancer[J]. J Thorac Oncol, 2020, 15(10): 1624-1635.
doi: 10.1016/j.jtho.2020.06.008 |
[60] |
LI R J,, YU L,, LIN S X, et al. Involved field radiotherapy (IFRT) versus elective nodal irradiation (ENI) for locally advanced non-small cell lung cancer: a meta-analysis of incidence of elective nodal failure (ENF)[J]. Radiat Oncol, 2016, 11(1): 124.
doi: 10.1186/s13014-016-0698-3 |
[61] | CHEN M,, BAO Y,, MA H L, et al. Involved-field radiotherapy versus elective nodal irradiation in combination with concurrent chemotherapy for locally advanced non-small cell lung cancer: a prospective randomized study[J]. Biomed Res Int, 2013, 2013: 371819. |
[62] |
SENAN S,, BURGERS S,, SAMSON M J, et al. Can elective nodal irradiation be omitted in stage Ⅲ non-small cell lung cancer? Analysis of recurrences in a phase Ⅱ study of induction chemotherapy and involved-field radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2002, 54(4): 999-1006.
doi: 10.1016/S0360-3016(02)03028-6 |
[63] |
ROSENZWEIG K E,, SURA S,, JACKSON A, et al. Involved-field radiation therapy for inoperable non-small cell lung cancer[J]. J Clin Oncol, 2007, 25(35): 5557-5561.
doi: 10.1200/JCO.2007.13.2191 |
[64] |
FERNANDES A T,, SHEN J,, FINLAY J, et al. Elective nodal irradiation (ENI) vs involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): a comparative analysis of toxicities and clinical outcomes[J]. Radiother Oncol, 2010, 95(2): 178-184.
doi: 10.1016/j.radonc.2010.02.007 |
[65] |
YUAN S H,, SUN X D,, LI M H, et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage Ⅲ nonsmall cell lung cancer[J]. Am J Clin Oncol, 2007, 30(3): 239-244.
doi: 10.1097/01.coc.0000256691.27796.24 |
[66] | TOPKAN E,, OZDEMIR Y,, GULER O C, et al. Comparison of involved field radiotherapy versus elective nodal irradiation in stage ⅢB/C non-small cell lung carcinoma patients treated with concurrent chemoradiotherapy: a propensity score matching study[J]. J Oncol, 2020, 2020: 7083149. |
[67] |
WITHERS H R,, PETERS L J,, TAYLOR J M G. Dose-response relationship for radiation therapy of subclinical disease[J]. Int J Radiat Oncol, 1995, 31(2): 353-359.
doi: 10.1016/0360-3016(94)00354-N |
[68] |
WITHERS H R,, SUWINSKI R. Radiation dose response for subclinical metastases[J]. Semin Radiat Oncol, 1998, 8(3): 224-228.
doi: 10.1016/S1053-4296(98)80048-9 |
[69] |
XIA F,, ZHOU L J,, YANG X, et al. Is a clinical target volume (CTV) necessary for locally advanced non-small cell lung cancer treated with intensity-modulated radiotherapy? A dosimetric evaluation of three different treatment plans[J]. J Thorac Dis, 2017, 9(12): 5194-5202.
doi: 10.21037/jtd.2017.10.147 |
[70] |
ZOU L Q,, CHU L,, XIA F, et al. Is clinical target volume necessary? A failure pattern analysis in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy using intensity-modulated radiotherapy technique[J]. Transl Lung Cancer Res, 2020, 9(5): 1986-1995.
doi: 10.21037/tlcr-20-523 |
[71] |
LIANG X C,, YU H M,, YU R, et al. Efficacy of the smaller target volume for stage Ⅲ non-small cell lung cancer treated with intensity-modulated radiotherapy[J]. Mol Clin Oncol, 2015, 3(5): 1172-1176.
doi: 10.3892/mco.2015.588 |
[72] | KILBURN J M,, LUCAS J T,, SOIKE M H, et al. Is a clinical target volume (CTV) necessary in the treatment of lung cancer in the modern era combining 4-D imaging and image-guided radiotherapy (IGRT)?[J]. Cureus, 2016, 8(1): e466. |
[73] |
JIANG C X,, HAN S Y,, CHEN W C, et al. A retrospective study of shrinking field radiation therapy during chemoradiotherapy in stage Ⅲ non-small cell lung cancer[J]. Oncotarget, 2018, 9(15): 12443-12451.
doi: 10.18632/oncotarget.23849 |
[74] | MORISADA M,, CLAVIJO P E,, MOORE E, et al. PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation[J]. Oncoimmunology, 2017, 7(3): e1395996. |
[75] |
ZHANG T,, YU H F,, NI C, et al. Hypofractionated stereotactic radiation therapy activates the peripheral immune response in operable stage Ⅰ non-small cell lung cancer[J]. Sci Rep, 2017, 7(1): 4866.
doi: 10.1038/s41598-017-04978-x |
[76] |
PAVLOPOULOU A,, BAGOS P G,, KOUTSANDREA V, et al. Molecular determinants of radiosensitivity in normal and tumor tissue: a bioinformatic approach[J]. Cancer Lett, 2017, 403: 37-47.
doi: 10.1016/j.canlet.2017.05.023 |
[77] |
KERNS S L,, FACHAL L,, DORLING L, et al. Radiogenomics consortium genome-wide association study meta-analysis of late toxicity after prostate cancer radiotherapy[J]. J Natl Cancer Inst, 2020, 112(2): 179-190.
doi: 10.1093/jnci/djz075 |
[78] |
BERNICHON E,, VALLARD A,, WANG Q, et al. Genomic alterations and radioresistance in breast cancer: an analysis of the ProfiLER protocol[J]. Ann Oncol, 2017, 28(11): 2773-2779.
doi: 10.1093/annonc/mdx488 |
[79] |
AHMED K A,, BERGLUND A E,, WELSH E A, et al. The radiosensitivity of brain metastases based upon primary histology utilizing a multigene index of tumor radiosensitivity[J]. Neuro Oncol, 2017, 19(8): 1145-1146.
doi: 10.1093/neuonc/nox043 |
[80] |
JIN J Y,, WANG W L,, TEN HAKEN R K, et al. Use a survival model to correlate single-nucleotide polymorphisms of DNA repair genes with radiation dose-response in patients with non-small cell lung cancer[J]. Radiother Oncol, 2015, 117(1): 77-82.
doi: 10.1016/j.radonc.2015.07.024 |
[81] |
LEE Y S,, OH J H,, YOON S, et al. Differential gene expression profiles of radioresistant non-small cell lung cancer cell lines established by fractionated irradiation: tumor protein p53-inducible protein 3 confers sensitivity to ionizing radiation[J]. Int J Radiat Oncol Biol Phys, 2010, 77(3): 858-866.
doi: 10.1016/j.ijrobp.2009.12.076 |
[82] |
EDVARDSEN H,, TEFRE T,, JANSEN L, et al. Linkage disequilibrium pattern of the ATM gene in breast cancer patients and controls; association of SNPs and haplotypes to radio-sensitivity and post-lumpectomy local recurrence[J]. Radiat Oncol, 2007, 2: 25.
doi: 10.1186/1748-717X-2-25 |
[83] |
SAK A,, STUEBEN G,, GRONEBERG M, et al. Targeting of Rad51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines[J]. Br J Cancer, 2005, 92(6): 1089-1097.
doi: 10.1038/sj.bjc.6602457 |
[84] |
SITTHIDEATPHAIBOON P,, GALAN-COBO A,, NEGRAO M V, et al. STK11/LKB1 mutations in NSCLC are associated with KEAP1/NRF2-dependent radiotherapy resistance targetable by glutaminase inhibition[J]. Clin Cancer Res, 2021, 27(6): 1720-1733.
doi: 10.1158/1078-0432.CCR-20-2859 |
[85] |
ESCHRICH S A,, PRAMANA J,, ZHANG H L, et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation[J]. Int J Radiat Oncol Biol Phys, 2009, 75(2): 489-496.
doi: 10.1016/j.ijrobp.2009.06.014 |
[86] |
ESCHRICH S,, ZHANG H L,, ZHAO H Y, et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform[J]. Int J Radiat Oncol Biol Phys, 2009, 75(2): 497-505.
doi: 10.1016/j.ijrobp.2009.05.056 |
[87] |
TORRES-ROCA J F,, ESCHRICH S,, ZHAO H Y, et al. Prediction of radiation sensitivity using a gene expression classifier[J]. Cancer Res, 2005, 65(16): 7169-7176.
doi: 10.1158/0008-5472.CAN-05-0656 |
[88] |
SCOTT J G,, BERGLUND A,, SCHELL M J, et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study[J]. Lancet Oncol, 2017, 18(2): 202-211.
doi: 10.1016/S1470-2045(16)30648-9 |
[89] |
AHMED K A,, LIVERINGHOUSE C L,, MILLS M N, et al. Utilizing the genomically adjusted radiation dose (GARD) to personalize adjuvant radiotherapy in triple negative breast cancer management[J]. EBioMedicine, 2019, 47: 163-169.
doi: 10.1016/j.ebiom.2019.08.019 |
[90] |
OLIVER D E,, MOHAMMADI H,, FIGURA N, et al. Novel genomic-based strategies to personalize lymph node radiation therapy[J]. Semin Radiat Oncol, 2019, 29(2): 111-125.
doi: 10.1016/j.semradonc.2018.11.003 |
[91] |
SCOTT J G,, SEDOR G,, ELLSWORTH P, et al. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis[J]. Lancet Oncol, 2021, 22(9): 1221-1229.
doi: 10.1016/S1470-2045(21)00347-8 |
[92] |
SCOTT J G,, SEDOR G,, SCARBOROUGH J A, et al. Personalizing radiotherapy prescription dose using genomic markers of radiosensitivity and normal tissue toxicity in NSCLC[J]. J Thorac Oncol, 2021, 16(3): 428-438.
doi: 10.1016/j.jtho.2020.11.008 |
[93] |
NICHOLS R C,, HUH S N,, HENDERSON R H, et al. Proton radiation therapy offers reduced normal lung and bone marrow exposure for patients receiving dose-escalated radiation therapy for unresectable stage Ⅲ non-small cell lung cancer: a dosimetric study[J]. Clin Lung Cancer, 2011, 12(4): 252-257.
doi: 10.1016/j.cllc.2011.03.027 |
[94] |
HIGGINS K A,, O'CONNELL K,, LIU Y, et al. National cancer database analysis of proton versus photon radiation therapy in non-small cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2017, 97(1): 128-137.
doi: 10.1016/j.ijrobp.2016.10.001 |
[95] |
GJYSHI O,, XU T,, ELHAMMALI A, et al. Toxicity and survival after intensity-modulated proton therapy versus passive scattering proton therapy for NSCLC[J]. J Thorac Oncol, 2021, 16(2): 269-277.
doi: 10.1016/j.jtho.2020.10.013 |
[96] |
LIAO Z X,, LEE J J,, KOMAKI R, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small cell lung cancer[J]. J Clin Oncol, 2018, 36(18): 1813-1822.
doi: 10.1200/JCO.2017.74.0720 |
[97] |
TAKAHASHI W,, NAKAJIMA M,, YAMAMOTO N, et al. A prospective nonrandomized phase Ⅰ/Ⅱ study of carbon ion radiotherapy in a favorable subset of locally advanced non-small cell lung cancer (NSCLC)[J]. Cancer, 2015, 121(8): 1321-1327.
doi: 10.1002/cncr.29195 |
[98] |
ONISHI M,, OKONOGI N,, OIKE T, et al. High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells[J]. J Radiat Res, 2018, 59(5): 541-546.
doi: 10.1093/jrr/rry049 |
[99] |
ANDO K,, FUJITA H,, HOSOI A, et al. Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation[J]. J Radiat Res, 2017, 58(4): 446-455.
doi: 10.1093/jrr/rrx005 |
[100] |
BROWNSTEIN J M,, WISDOM A J,, CASTLE K D, et al. Characterizing the potency and impact of carbon ion therapy in a primary mouse model of soft tissue sarcoma[J]. Mol Cancer Ther, 2018, 17(4): 858-868.
doi: 10.1158/1535-7163.MCT-17-0965 |
[1] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[2] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[3] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[4] | 廖梓伊, 彭杨, 曾蓓蕾, 马影颖, 曾丽, 甘科论, 马代远. 局部晚期食管鳞状细胞癌患者新辅助免疫治疗联合化疗后行根治性手术的术后病理学缓解程度及影响因素分析[J]. 中国癌症杂志, 2024, 34(7): 669-679. |
[5] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[6] | 黄思捷, 康勋, 李文斌. 鞘内注射治疗实体瘤脑膜转移的临床研究进展[J]. 中国癌症杂志, 2024, 34(7): 695-701. |
[7] | 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560. |
[8] | 辛美仪, 林玉红, 赵凯. 肿瘤mRNA疫苗及其递送载体在抗肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(5): 509-516. |
[9] | 林艺聪, 王悦, 薛倩倩, 郑强, 金燕, 黄子凌, 李媛. EGFR T790M突变非小细胞肺癌患者的临床病理学、免疫微环境特征及对预后预测的意义[J]. 中国癌症杂志, 2024, 34(4): 368-379. |
[10] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[11] | 薛驰, 高鹏, 朱志, 王振宁. 免疫治疗在胃癌的围手术期及转化治疗中的应用和挑战[J]. 中国癌症杂志, 2024, 34(3): 259-267. |
[12] | 陈亦凡, 李婷, 王碧芸. CCR8在肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(3): 299-305. |
[13] | 崔健淳, 陆维, 李乾永. 体表引导自动摆位在盆腔肿瘤放疗中的临床应用价值[J]. 中国癌症杂志, 2024, 34(10): 966-971. |
[14] | 吴晗, 杨章孺, 冯雯, 曾琬琴, 郭金栋, 李洪选, 王常禄, 王家明, 吕长兴, 张琴, 余雯, 蔡旭伟, 傅小龙. 多原发性早期肺癌立体定向放射治疗后疗效及患者预后分析[J]. 中国癌症杂志, 2023, 33(9): 844-856. |
[15] | 张玲玲, 王湘漪, 魏星, 林莉, 汤传昊, 梁军. 止吐用低频电刺激仪防治非小细胞肺癌患者化疗导致恶心呕吐的回顾性研究[J]. 中国癌症杂志, 2023, 33(8): 776-781. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn