中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (1): 30-39.doi: 10.19401/j.cnki.1007-3639.2025.01.004
收稿日期:
2024-12-11
修回日期:
2025-01-21
出版日期:
2025-01-30
发布日期:
2025-02-17
通信作者:
杨爱民
作者简介:
耿倩倩(ORCID: 0009-0009-2137-7070),博士,副主任医师。Received:
2024-12-11
Revised:
2025-01-21
Published:
2025-01-30
Online:
2025-02-17
Contact:
YANG Aimin
文章分享
摘要:
大多数分化型甲状腺癌患者能够从手术、放射性碘-131和促甲状腺激素(thyroid-stimulating hormone,TSH)抑制治疗中获益,预后良好。一旦发展为碘难治性甲状腺癌,则预后较差且治疗手段有限、治疗效果局限,是近年来的研究热点。随着对肿瘤发生、发展机制的深入研究以及各种诊疗技术的快速发展,新药物和新疗法在碘难治性甲状腺癌领域均有显著进展。新型靶向药物的研发,为碘难治性甲状腺癌治疗带来了革命性的突破。其中以索拉非尼和仑伐替尼为代表的多靶点酪氨酸激酶抑制剂(multi-target tyrosine kinase inhibitor,mTKI)能够显著延长患者的无进展生存期,开启了碘难治性甲状腺癌靶向治疗的新时代。卡博替尼作为TKI治疗失败后的二线治疗也取得了令人瞩目的疗效。国产TKI药物如阿帕替尼和安罗替尼在碘难治性甲状腺癌靶向治疗中的疗效和安全性方面表现俱佳,备受关注。此外靶向BRAF V600E突变、RET融合及NTRK融合基因的特异性靶点酪氨酸激酶抑制剂(达拉非尼、普拉替尼/塞普替尼、拉罗替尼)使得碘难治性分化型甲状腺癌跨进了精准治疗时代。对于存在RET融合/NTRK融合者,指南推荐首先选择特异性靶点酪氨酸激酶抑制剂,优于泛靶点激酶抑制剂;若无上述基因突变者,泛靶点激酶抑制剂(索拉非尼和仑伐替尼)是标准的一线治疗选择。MEK抑制剂(司美替尼)辅助诱导再分化有望恢复碘难治性甲状腺癌患者的部分摄碘功能,在此基础上的靶碘联合治疗未来也将是一个非常有前途的策略。而免疫检查点抑制剂单药治疗碘难治性甲状腺癌的结果并不乐观,但其与TKI的联合应用则显示出一定的安全性和有效性,值得期待。由于耐药以及无法耐受的不良反应等原因,积极探索新疗法是十分必要的。核医学分子影像指导下的放射性核素治疗或将为碘难治性甲状腺癌患者带来新的希望。靶向前列腺特异性膜抗原(prostate-specific membrane antigen,PSMA)、生长抑素受体(somatostatin receptor,SSTR)及成纤维细胞激活蛋白抑制剂(fibroblast-activating protein inhibitor,FAPi)等放射性配体/受体治疗具有靶向性、可视化及诊疗一体化等特点,并在碘难治性甲状腺癌中进行了初步尝试,证实其在TKI治疗后疾病进展患者中具有较好的可行性。本文就近几年在碘难治性分化型甲状腺癌治疗领域的新药物和新技术进行综述,辅助指导临床的同时,期盼未来能拥有更多个体化、精准化的治疗选择,来进一步提升这部分患者的生存质量和生存期。
中图分类号:
耿倩倩, 杨爱民. 碘难治性分化型甲状腺癌的治疗进展及展望[J]. 中国癌症杂志, 2025, 35(1): 30-39.
GENG Qianqian, YANG Aimin. Progress and prospect on treatment for radioiodine-refractory thyroid cancer[J]. China Oncology, 2025, 35(1): 30-39.
[1] | HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. |
[2] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
[3] | HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133. |
[4] | 陈文捷, 王亚兵, 陈晓琳, 等. 碘难治性分化型甲状腺癌的最新研究进展[J]. 中国临床药理学与治疗学, 2022, 27(1): 116-120. |
CHEN W J, WANG Y B, CHEN X L, et al. Advances in the study of iodine-resistant differentiated thyroid cancer[J]. Chin J Clin Pharmacol Ther, 2022, 27(1): 116-120. | |
[5] |
FILETTI S, DURANTE C, HARTL D M, et al. ESMO Clinical Practice Guideline update on the use of systemic therapy in advanced thyroid cancer[J]. Ann Oncol, 2022, 33(7): 674-684.
doi: 10.1016/j.annonc.2022.04.009 pmid: 35491008 |
[6] |
BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328.
doi: 10.1016/S0140-6736(14)60421-9 pmid: 24768112 |
[7] |
FENG G L, LUO Y, ZHANG Q, et al. Sorafenib and radioiodine-refractory differentiated thyroid cancer (RR-DTC): a systematic review and meta-analysis[J]. Endocrine, 2020, 68(1): 56-63.
doi: 10.1007/s12020-019-02167-6 pmid: 31955344 |
[8] | SCHLUMBERGER M, TAHARA M, WIRTH L J, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630. |
[9] | REUTER C, YU X, BAIG M, et al. 913 Baseline characteristics of responders and nonresponders from the phase 3 study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT)[J]. Eur J Cancer, 2017, 72: S112-S113. |
[10] |
TAHARA M, BROSE M S, WIRTH L J, et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer[J]. Eur J Cancer, 2019, 106: 61-68.
doi: S0959-8049(18)31430-8 pmid: 30471649 |
[11] | WIRTH L J, DURANTE C, TOPLISS D J, et al. Lenvatinib for the treatment of radioiodine-refractory differentiated thyroid cancer: treatment optimization for maximum clinical benefit[J]. Oncologist, 2022, 27(7): 565-572. |
[12] | ZHENG X Q, XU Z G, JI Q H, et al. A randomized, phase Ⅲ study of lenvatinib in Chinese patients with radioiodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2021, 27(20): 5502-5509. |
[13] |
BROSE M S, ROBINSON B, SHERMAN S I, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2021, 22(8): 1126-1138.
doi: 10.1016/S1470-2045(21)00332-6 pmid: 34237250 |
[14] |
BROSE M S, ROBINSON B G, SHERMAN S I, et al. Cabozantinib for previously treated radioiodine-refractory differentiated thyroid cancer: updated results from the phase 3 COSMIC-311 trial[J]. Cancer, 2022, 128(24): 4203-4212.
doi: 10.1002/cncr.34493 pmid: 36259380 |
[15] | CAPDEVILA J, KRAJEWSKA J, HERNANDO J, et al. Increased progression-free survival with cabozantinib versus placebo in patients with radioiodine-refractory differentiated thyroid cancer irrespective of prior vascular endothelial growth factor receptor-targeted therapy and tumor histology: a subgroup analysis of the COSMIC-311 study[J]. Thyroid, 2024, 34(3): 347-359. |
[16] | LIN Y S, QIN S K, YANG H, et al. Multicenter randomized double-blind phase Ⅲ trial of donafenib in progressive radioactive iodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2023, 29(15): 2791-2799. |
[17] | LIN Y S, QIN S K, LI Z Y, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial[J]. JAMA Oncol, 2022, 8(2): 242-250. |
[18] | HUANG N S, WEI W J, XIANG J, et al. The efficacy and safety of anlotinib in neoadjuvant treatment of locally advanced thyroid cancer: a single-arm phase Ⅱ clinical trial[J]. Thyroid, 2021, 31(12): 1808-1813. |
[19] | BUSAIDY N L, KONDA B, WEI L, et al. Dabrafenib versus dabrafenib+trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial[J]. Thyroid, 2022, 32(10): 1184-1192. |
[20] | VAN BERGE HENEGOUWEN J M, VAN DER WIJNGAART H, ZEVERIJN L J, et al. Efficacy and toxicity of vemurafenib and cobimetinib in relation to plasma concentrations, after administration via feeding tube in patients with BRAF-mutated thyroid cancer: a case series and review of literature[J]. Cancer Chemother Pharmacol, 2022, 90(1): 97-104. |
[21] | BROSE M S, PRYMA D A, NEWBOLD K L. Mitogen-activated protein kinase inhibitor selumetinib fails to increase the complete response rate of radioactive iodine alone in high-risk differentiated thyroid cancer: lessons from the phase Ⅲ ASTRA study[J]. J Clin Oncol, 2022, 40(17): 1847-1849. |
[22] | SALVATORE D, SANTORO M, SCHLUMBERGER M. The importance of the RET gene in thyroid cancer and therapeutic implications[J]. Nat Rev Endocrinol, 2021, 17(5): 296-306. |
[23] | ULLMANN T M, THIESMEYER J W, LEE Y J, et al. RET fusion-positive papillary thyroid cancers are associated with a more aggressive phenotype[J]. Ann Surg Oncol, 2022. |
[24] | SUBBIAH V, HU M I, WIRTH L J, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study[J]. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501. |
[25] | WIRTH L J, SHERMAN E, ROBINSON B, et al. Efficacy of selpercatinib in RET-altered thyroid cancers[J]. N Engl J Med, 2020, 383(9): 825-835. |
[26] | ZHENG X Q, JI Q H, SUN Y P, et al. Efficacy and safety of selpercatinib in Chinese patients with advanced RET-altered thyroid cancers: results from the phase Ⅱ LIBRETTO-321 study[J]. Ther Adv Med Oncol, 2022, 14: 17588359221119318. |
[27] | AGOSTO SALGADO S, KAYE E R, SARGI Z, et al. Management of advanced thyroid cancer: overview, advances, and opportunities[J]. Am Soc Clin Oncol Educ Book, 2023, 43: e389708. |
[28] | MA Y H, ZHANG Q, ZHANG K X, et al. NTRK fusions in thyroid cancer: pathology and clinical aspects[J]. Crit Rev Oncol Hematol, 2023, 184: 103957. |
[29] | DRILON A, LAETSCH T W, KUMMAR S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739. |
[30] | BAUMAN J E, CHEN Z J, ZHANG C, et al. A multicenter randomized phase Ⅱ study of single agent efficacy and optimal combination sequence of everolimus and pasireotide LAR in advanced thyroid cancer[J]. Cancers (Basel), 2022, 14(11): 2639. |
[31] | LIM S M, CHANG H, YOON M J, et al. A multicenter, phase Ⅱ trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes[J]. Ann Oncol, 2013, 24(12): 3089-3094. |
[32] | DERWICH A, SYKUTERA M, BROMIŃSKA B, et al. Clinical implications of mTOR expression in papillary thyroid cancer-a systematic review[J]. Cancers (Basel), 2023, 15(6): 1665. |
[33] | SCHEFFEL R S, DORA J M, MAIA A L. BRAF mutations in thyroid cancer[J]. Curr Opin Oncol, 2022, 34(1): 9-18. |
[34] | DUNN L A, SHERMAN E J, BAXI S S, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. |
[35] | WEBER M, KERSTING D, RIEMANN B, et al. Enhancing radioiodine incorporation into radioiodine-refractory thyroid cancer with MAPK inhibition (ERRITI): a single-center prospective two-arm study[J]. Clin Cancer Res, 2022, 28(19): 4194-4202. |
[36] |
OTT P A, BANG Y J, PIHA-PAUL S A, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4): 318-327.
doi: 10.1200/JCO.2018.78.2276 pmid: 30557521 |
[37] | OH D Y, ALGAZI A, CAPDEVILA J, et al. Efficacy and safety of pembrolizumab monotherapy in patients with advanced thyroid cancer in the phase 2 KEYNOTE-158 study[J]. Cancer, 2023, 129(8): 1195-1204. |
[38] | WANG K, ZHANG Y, XING Y, et al. Current and future of immunotherapy for thyroid cancer based on bibliometrics and clinical trials[J]. Discov Oncol, 2024, 15(1): 50. |
[39] |
DIERKS C, SEUFERT J, AUMANN K, et al. Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]. Thyroid, 2021, 31(7): 1076-1085.
doi: 10.1089/thy.2020.0322 pmid: 33509020 |
[40] |
AGARWAL N, MCGREGOR B, MAUGHAN B L, et al. Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021)[J]. Lancet Oncol, 2022, 23(7): 899-909.
doi: 10.1016/S1470-2045(22)00278-9 pmid: 35690072 |
[41] | EDELINE J, HOUOT R, MARABELLE A, et al. CAR-T cells and BiTEs in solid tumors: challenges and perspectives[J]. J Hematol Oncol, 2021, 14(1): 65. |
[42] | LI H N, ZHOU X, WANG G, et al. CAR-T cells targeting TSHR demonstrate safety and potent preclinical activity against differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2022, 107(4): 1110-1126. |
[43] | 于芳, 范子义, 马韵涵, 等. 甲状腺癌化学治疗研究综述[J]. 中华内分泌外科杂志, 2023, 17(1): 117-119. |
YU F, FAN Z Y, MA Y H, et al. Review of advances in chemotherapy for thyroid cancer[J]. Chin J Endocr Surg, 2023, 17(1): 117-119. | |
[44] |
SCHMID P, RUGO H S, ADAMS S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(1): 44-59.
doi: S1470-2045(19)30689-8 pmid: 31786121 |
[45] | CIAPPUCCINI R, SAGUET-RYSANEK V, GIFFARD F, et al. PSMA expression in differentiated thyroid cancer: association with radioiodine, 18FDG uptake, and patient outcome[J]. J Clin Endocrinol Metab, 2021, 106(12): 3536-3545. |
[46] |
RIZZO A, PICCARDO A, TREGLIA G. Imaging through PSMA-targeted PET in patients diagnosed with radioiodine-refractory thyroid cancer, a flash in the pan or a game changer?[J]. Endocrine, 2024, 85(2): 601-603.
doi: 10.1007/s12020-024-03748-w pmid: 38416379 |
[47] | SOLLINI M, DI TOMMASO L, KIRIENKO M, et al. PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome[J]. EJNMMI Res, 2019, 9(1): 93. |
[48] | RIZZO A, RACCA M, DALL’ARMELLINA S, et al. Potential role of PSMA-targeted PET in thyroid malignant disease: a systematic review[J]. Diagnostics (Basel), 2023, 13(3): 564. |
[49] | DE VRIES L H, LODEWIJK L, BRAAT A J A T, et al. 68Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177Lu-PSMA-617[J]. EJNMMI Res, 2020, 10(1): 18. |
[50] |
HOYER D, BELL G I, BERELOWITZ M, et al. Classification and nomenclature of somatostatin receptors[J]. Trends Pharmacol Sci, 1995, 16(3): 86-88.
pmid: 7792934 |
[51] | WANG A Y, YUAN Y X, CHU H, et al. Somatostatin receptor 2: a potential predictive biomarker for immune checkpoint inhibitor treatment[J]. Pathol Oncol Res, 2022, 28: 1610196. |
[52] |
THAKUR S, DALEY B, MILLO C, et al. 177Lu-DOTA-EB-TATE, a radiolabeled analogue of somatostatin receptor type 2, for the imaging and treatment of thyroid cancer[J]. Clin Cancer Res, 2021, 27(5): 1399-1409.
doi: 10.1158/1078-0432.CCR-20-3453 pmid: 33355247 |
[53] | GUBBI S, KOCH C A, KLUBO-GWIEZDZINSKA J. Peptide receptor radionuclide therapy in thyroid cancer[J]. Front Endocrinol (Lausanne), 2022, 13: 896287. |
[54] |
BUDIAWAN H, SALAVATI A, KULKARNI H R, et al. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)Yttrium and (177)Lutetium labeled somatostatin analogs: toxicity, response and survival analysis[J]. Am J Nucl Med Mol Imaging, 2013, 4(1): 39-52.
pmid: 24380044 |
[55] |
LEE D Y, KIM Y I. Peptide receptor radionuclide therapy in patients with differentiated thyroid cancer: a meta-analysis[J]. Clin Nucl Med, 2020, 45(8): 604-610.
doi: 10.1097/RLU.0000000000003110 pmid: 32520503 |
[56] | GIESEL F L, KRATOCHWIL C, LINDNER T, et al. 68Ga-FAPI PET/CT: Biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers[J]. J Nucl Med, 2019, 60(3): 386-392. |
[57] | FU H, FU J, HUANG J X, et al. 68GA-FAPI PET/CT versus 18F-FDG PET/CT for detecting metastatic lesions in a case of radioiodine-refractory differentiated thyroid cancer[J]. Clin Nucl Med, 2021, 46(11): 940-942. |
[58] |
CHEN Y, ZHENG S, ZHANG J Y, et al. 68Ga-DOTA-FAPI-04 PET/CT imaging in radioiodine-refractory differentiated thyroid cancer (RR-DTC) patients[J]. Ann Nucl Med, 2022, 36(7): 610-622.
doi: 10.1007/s12149-022-01742-8 pmid: 35551610 |
[59] | BALLAL S, YADAV M P, MOON E S, et al. Novel fibroblast activation protein inhibitor-based targeted theranostics for radioiodine-refractory differentiated thyroid cancer patients: a pilot study[J]. Thyroid, 2022, 32(1): 65-77. |
[60] | FU H, HUANG J X, ZHAO T Z, et al. Fibroblast activation protein-targeted radioligand therapy with 177Lu-EB-FAPI for metastatic radioiodine-refractory thyroid cancer: first-in-human, dose-escalation study[J]. Clin Cancer Res, 2023, 29(23): 4740-4750. |
[1] | 李汝平, 杨辉. 放射性碘难治性甲状腺癌的临床试验现状及未来展望[J]. 中国癌症杂志, 2025, 35(1): 40-48. |
[2] | 王任飞, 卢改霞. 核医学分子影像在放射性碘难治性分化型甲状腺癌评估中的独特价值与争议[J]. 中国癌症杂志, 2025, 35(1): 49-57. |
[3] | 林秋玉, 王宇鑫, 林承赫. 靶向治疗与免疫治疗在放射性碘难治性分化型甲状腺癌中的应用与前景[J]. 中国癌症杂志, 2025, 35(1): 58-67. |
[4] | 姜晓彤, 刘锦川, 张迎强, 王瞳, 郭宁, 孙郁青, 石聪, 颜兵, 林岩松. 诊断性131I全身显像在分化型甲状腺癌131I治疗决策中的作用[J]. 中国癌症杂志, 2025, 35(1): 77-84. |
[5] | 冯欣滢, 王冰, 刘培峰. 腹膜转移癌腹腔化疗的创新与挑战[J]. 中国癌症杂志, 2024, 34(9): 827-837. |
[6] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[7] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[8] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[9] | 廖梓伊, 彭杨, 曾蓓蕾, 马影颖, 曾丽, 甘科论, 马代远. 局部晚期食管鳞状细胞癌患者新辅助免疫治疗联合化疗后行根治性手术的术后病理学缓解程度及影响因素分析[J]. 中国癌症杂志, 2024, 34(7): 669-679. |
[10] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[11] | 黄思捷, 康勋, 李文斌. 鞘内注射治疗实体瘤脑膜转移的临床研究进展[J]. 中国癌症杂志, 2024, 34(7): 695-701. |
[12] | 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560. |
[13] | 辛美仪, 林玉红, 赵凯. 肿瘤mRNA疫苗及其递送载体在抗肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(5): 509-516. |
[14] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[15] | 薛驰, 高鹏, 朱志, 王振宁. 免疫治疗在胃癌的围手术期及转化治疗中的应用和挑战[J]. 中国癌症杂志, 2024, 34(3): 259-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn