中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (11): 1032-1040.doi: 10.19401/j.cnki.1007-3639.2023.11.009
翟海晖1,2(), 刘元祺1,2, 张从政1,2, 官立萍1,2, 韩涛1(
)
收稿日期:
2023-08-09
修回日期:
2023-10-17
出版日期:
2023-11-30
发布日期:
2023-12-14
通信作者:
韩涛(ORCID: 0000-0002-5943-8520),博士,教授。
作者简介:
翟海晖(ORCID: 0009-0002-9211-7224),学士。
基金资助:
ZHAI Haihui1,2(), LIU Yuanqi1,2, ZHANG Congzheng1,2, GUAN Liping1,2, HAN Tao1(
)
Received:
2023-08-09
Revised:
2023-10-17
Published:
2023-11-30
Online:
2023-12-14
文章分享
摘要:
由TP53编码的P53蛋白是防止细胞癌变所需的关键因子,有广泛而强大的功能。P53在诱导细胞周期停滞、DNA损伤修复、细胞凋亡和衰老等过程中发挥重要作用,且这些功能的丧失不会使P53失去抑癌活性。新陈代谢是生命的基础,代谢异常导致多种疾病如肿瘤的发生,是癌症进展的主要驱动力之一。最近研究发现P53在调节全身代谢中起关键作用。P53介导的细胞代谢调节是控制肿瘤发生、发展的基本机制,有助于抑制肿瘤活性。本文就P53与葡萄糖、脂肪酸、氨基酸和核苷酸代谢的关系进行综述,并梳理肿瘤发展中P53在这些代谢调控中的复杂机制和最新研究进展。
中图分类号:
翟海晖, 刘元祺, 张从政, 官立萍, 韩涛. P53与肿瘤代谢的最新研究进展[J]. 中国癌症杂志, 2023, 33(11): 1032-1040.
ZHAI Haihui, LIU Yuanqi, ZHANG Congzheng, GUAN Liping, HAN Tao. The latest research progress on P53 and tumor metabolism[J]. China Oncology, 2023, 33(11): 1032-1040.
[1] |
LACROIX M, RISCAL R, ARENA G, et al. Metabolic functions of the tumor suppressor p53: implications in normal physiology, metabolic disorders, and cancer[J]. Mol Metab, 2020, 33: 2-22.
doi: 10.1016/j.molmet.2019.10.002 |
[2] |
MAO Y, JIANG P. The crisscross between p53 and metabolism in cancer[J]. Acta Biochim Biophys Sin (Shanghai), 2023, 55(6): 914-922.
doi: 10.3724/abbs.2023109 |
[3] |
FU X, WU S, LI B, et al. Functions of p53 in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 71-78.
doi: 10.1007/s13238-019-00665-x |
[4] |
ZAFAR A, KHAN M J, NAEEM A. MDM2- an indispensable player in tumorigenesis[J]. Mol Biol Rep, 2023, 50(8): 6871-6883.
doi: 10.1007/s11033-023-08512-3 pmid: 37314603 |
[5] |
HOU Y C, ZHANG X T, YAO H, et al. METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53-wild-type cells[J]. EMBO Rep, 2023, 24(4): e56325.
doi: 10.15252/embr.202256325 |
[6] |
MARCUCCI F, RUMIO C. On the role of glycolysis in early tumorigenesis-permissive and executioner effects[J]. Cells, 2023, 12(8): 1124.
doi: 10.3390/cells12081124 |
[7] | SHEN J Z, WANG Q R, MAO Y N, et al. Targeting the p53 signaling pathway in cancers: molecular mechanisms and clinical studies[J]. MedComm (2020), 2023, 4(3): e288. |
[8] |
WHITT A G, NEELY A M, SARKAR O S, et al. Paraoxonase 2 (PON2) plays a limited role in murine lung tumorigenesis[J]. Sci Rep, 2023, 13(1): 9929.
doi: 10.1038/s41598-023-37146-5 pmid: 37337025 |
[9] |
KLEINEHR J, SCHÖFBÄNKER M, DANIEL K, et al. Glycolytic interference blocks influenza A virus propagation by impairing viral polymerase-driven synthesis of genomic vRNA[J]. PLoS Pathog, 2023, 19(7): e1010986.
doi: 10.1371/journal.ppat.1010986 |
[10] |
MUKHERJEE A G, GOPALAKRISHNAN A V. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario[J]. Med Oncol, 2023, 40(9): 248.
doi: 10.1007/s12032-023-02124-4 pmid: 37480500 |
[11] |
EWUNKEM A J, DEVE M, HARRISON S H, et al. Diepoxybutane induces the p53-dependent transactivation of the CCL4 gene that mediates apoptosis in exposed human lymphoblasts[J]. J Biochem Mol Toxicol, 2023, 37(5): e23316.
doi: 10.1002/jbt.v37.5 |
[12] |
HUANG J J, DU J J, LIN W J, et al. Regulation of lactate production through p53/β-enolase axis contributes to statin-associated muscle symptoms[J]. EBioMedicine, 2019, 45: 251-260.
doi: 10.1016/j.ebiom.2019.06.003 |
[13] |
CHETTA P, SRIRAM R, ZADRA G. Lactate as key metabolite in prostate cancer progression: what are the clinical implications?[J]. Cancers (Basel), 2023, 15(13): 3473.
doi: 10.3390/cancers15133473 |
[14] |
KAM C S, HO D W, MING V S, et al. PFKFB4 drives the oncogenicity in TP53-mutated hepatocellular carcinoma in a phosphatase-dependent manner[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(6): 1325-1350.
doi: 10.1016/j.jcmgh.2023.02.004 |
[15] |
KOUZU H, TATEKOSHI Y, CHANG H C, et al. ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice[J]. J Clin Invest, 2022, 132(10): e154491.
doi: 10.1172/JCI154491 |
[16] |
ROBERSON P A, KINCHELOE G N, WELLES J E, et al. Glucose-induced activation of mTORC1 is associated with hexokinase 2 binding to sestrins in HEK293T cells[J]. J Nutr, 2023, 153(4): 988-998.
doi: 10.1016/j.tjnut.2022.11.021 |
[17] | CASTELLANOS G, VALBUENA D S, PÉREZ E, et al. Chromosomal instability as enabling feature and central hallmark of breast cancer[J]. Breast Cancer (Dove Med Press), 2023, 15: 189-211. |
[18] | WANG H L, GUO M, WEI H D, et al. Targeting p53 pathways: mechanisms, structures, and advances in therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 92. |
[19] |
ZHAN H, ZHANG Q, ZHANG C, et al. Targeted activation of HNF4α by AMPK inhibits apoptosis and ameliorates neurological injury caused by cardiac arrest in rats[J]. Neurochem Res, 2023, 48(10): 3129-3145.
doi: 10.1007/s11064-023-03957-1 pmid: 37338793 |
[20] |
XIONG C, LING H, HAO Q, et al. Cuproptosis: P53-regulated metabolic cell death?[J]. Cell Death Differ, 2023, 30(4): 876-884.
doi: 10.1038/s41418-023-01125-0 |
[21] | TANG M, XU H, HUANG H Y, et al. Metabolism-based molecular subtyping endows effective ketogenic therapy in p53-mutant colon cancer[J]. Adv Sci (Weinh), 2022, 9(29): e2201992. |
[22] |
LIU Y Q, GU W. The complexity of p53-mediated metabolic regulation in tumor suppression[J]. Semin Cancer Biol, 2022, 85: 4-32.
doi: 10.1016/j.semcancer.2021.03.010 |
[23] | HAN Y L, LIANG C, YU Y X, et al. Gluconeogenesis alteration and p53-SIRT6-Fox01 signaling adaptive regulation in sheep from different grazing periods[J]. Comput Math Methods Med, 2022, 2022: 4614665. |
[24] |
SANFORD J D, FRANKLIN D, GROIS G A, et al. Carnitine o-octanoyltransferase is a p53 target that promotes oxidative metabolism and cell survival following nutrient starvation[J]. J Biol Chem, 2023, 299(7): 104908.
doi: 10.1016/j.jbc.2023.104908 |
[25] |
ZHANG X Y, TAO G R, JIANG J, et al. PCK1 activates oncogenic autophagy via down-regulation serine phosphorylation of UBAP2L and antagonizes colorectal cancer growth[J]. Cancer Cell Int, 2023, 23(1): 68.
doi: 10.1186/s12935-023-02894-x pmid: 37062825 |
[26] |
REINISCH I, KLYMIUK I, MICHENTHALER H, et al. p 53 regulates a miRNA-fructose transporter axis in brown adipose tissue under fasting[J]. Front Genet, 2022, 13: 913030.
doi: 10.3389/fgene.2022.913030 |
[27] |
SAFI A, SABERIYAN M, SANAEI M J, et al. The role of noncoding RNAs in metabolic reprogramming of cancer cells[J]. Cell Mol Biol Lett, 2023, 28(1): 37.
doi: 10.1186/s11658-023-00447-8 pmid: 37161350 |
[28] |
LIU Y, WANG J D, JIANG M X. Copper-related genes predict prognosis and characteristics of breast cancer[J]. Front Immunol, 2023, 14: 1145080.
doi: 10.3389/fimmu.2023.1145080 |
[29] |
MORRIS J P 4th, YASHINSKIE J J, KOCHE R, et al. Alpha-ketoglutarate links p53 to cell fate during tumour suppression[J]. Nature, 2019, 573(7775): 595-599.
doi: 10.1038/s41586-019-1577-5 |
[30] |
DA FONSECA JUNIOR A M, ISPADA J, DOS SANTOS E C, et al. Adaptative response to changes in pyruvate metabolism on the epigenetic landscapes and transcriptomics of bovine embryos[J]. Sci Rep, 2023, 13(1): 11504.
doi: 10.1038/s41598-023-38686-6 pmid: 37460590 |
[31] |
LI X, WU L M, ZOPP M, et al. p53-TP53-induced glycolysis regulator mediated glycolytic suppression attenuates DNA damage and genomic instability in fanconi anemia hematopoietic stem cells[J]. Stem Cells, 2019, 37(7): 937-947.
doi: 10.1002/stem.3015 pmid: 30977208 |
[32] |
WEI J, WANG S, ZHU H, et al. Hepatic depletion of nucleolar protein mDEF causes excessive mitochondrial copper accumulation associated with p53 and NRF1 activation[J]. iScience, 2023, 26(7): 107220.
doi: 10.1016/j.isci.2023.107220 |
[33] |
JAHOOR ALAM M. Insights from the p53 induced TIGAR protein 2 in the glycolytic pathway model[J]. Bioinformation, 2022, 18(3): 310-317.
doi: 10.6026/bioinformation |
[34] |
LIU Y Q, GU W. p53 in ferroptosis regulation: the new weapon for the old guardian[J]. Cell Death Differ, 2022, 29(5): 895-910.
doi: 10.1038/s41418-022-00943-y pmid: 35087226 |
[35] | DOU X Z, GUO H, D’AMICO T, et al. CryoEM structure with ATP synthase enables late-stage diversification of Cruentaren A[J]. Chemistry, 2023, 29(29): e202300262. |
[36] |
ROHBECK E, NIERSMANN C, KÖHRER K, et al. Positive allosteric GABAA receptor modulation counteracts lipotoxicity-induced gene expression changes in hepatocytes in vitro[J]. Front Physiol, 2023, 14: 1106075.
doi: 10.3389/fphys.2023.1106075 |
[37] |
HAO Q, CHEN J X, LU H, et al. The ARTS of p53-dependent mitochondrial apoptosis[J]. J Mol Cell Biol, 2023, 14(10): mjac074.
doi: 10.1093/jmcb/mjac074 |
[38] | LI G, WU J, LI L, et al. p53 deficiency induces MTHFD2 transcription to promote cell proliferation and restrain DNA damage[J]. Proc Natl Acad Sci USA, 2021, 118(28): e2019822118. |
[39] |
RAINHO M A, SIQUEIRA P B, DE AMORIM Í S S, et al. Mitochondria in colorectal cancer stem cells-a target in drug resistance[J]. Cancer Drug Resist, 2023, 6(2): 273-283.
doi: 10.20517/cdr |
[40] |
ZHANG K X, YANG X H, ZHENG M Y, et al. Acetylated-PPARγ expression is regulated by different p53 genotypes associated with the adipogenic differentiation of polyploid giant cancer cells with daughter cells[J]. Cancer Biol Med, 2023, 20(1): 56-76.
doi: 10.20892/j.issn.2095-3941.2022.0432 |
[41] | LI W, KOU J J, ZHANG Z X, et al. Cellular redox homeostasis maintained by malic enzyme 2 is essential for MYC-driven T cell lymphomagenesis[J]. Proc Natl Acad Sci U S A, 2023, 120(23): e2217869120. |
[42] |
MOON S H, HUANG C H, HOULIHAN S L, et al. p53 represses the mevalonate pathway to mediate tumor suppression[J]. Cell, 2019, 176(3): 564-580.e19.
doi: 10.1016/j.cell.2018.11.011 |
[43] |
ZHANG Y H, MOHIBI S, VASILATIS D M, et al. Ferredoxin reductase and p53 are necessary for lipid homeostasis and tumor suppression through the ABCA1-SREBP pathway[J]. Oncogene, 2022, 41(12): 1718-1726.
doi: 10.1038/s41388-021-02100-0 |
[44] |
GÓMEZ-SANTOS B, SAENZ DE URTURI D, NUÑEZ-GARCÍA M, et al. Liver osteopontin is required to prevent the progression of age-related nonalcoholic fatty liver disease[J]. Aging Cell, 2020, 19(8): e13183.
doi: 10.1111/acel.v19.8 |
[45] |
KANG J G, LAGO C U, LEE J E, et al. A mouse homolog of a human TP53 germline mutation reveals a lipolytic activity of p53[J]. Cell Rep, 2020, 30(3): 783-792.e5.
doi: 10.1016/j.celrep.2019.12.074 |
[46] |
WANG C Y, WANG C H, MAI R T, et al. Mutant p53-microRNA-200c-ZEB2-axis-induced CPT1C elevation contributes to metabolic reprogramming and tumor progression in basal-like breast cancers[J]. Front Oncol, 2022, 12: 940402.
doi: 10.3389/fonc.2022.940402 |
[47] |
XU R, WANG W N, ZHANG W L. Ferroptosis and the bidirectional regulatory factor p53[J]. Cell Death Discov, 2023, 9(1): 197.
doi: 10.1038/s41420-023-01517-8 |
[48] | KUO H C, LUO L X, MA Y, et al. The p53 transactivation domain 1-dependent response to acute DNA damage in endothelial cells protects against radiation-induced cardiac injury[J]. Radiat Res, 2022, 198(2): 145-153. |
[49] |
THIBAULT B, RAMOS-DELGADO F, GUILLERMET-GUIBERT J. Targeting class Ⅰ-Ⅱ-Ⅲ PI3Ks in cancer therapy: recent advances in tumor biology and preclinical research[J]. Cancers (Basel), 2023, 15(3): 784.
doi: 10.3390/cancers15030784 |
[50] | GAO Y Q, JIAO Y T, GONG X Y, et al. Role of transcription factors in apoptotic cells clearance[J]. Front Cell Dev Biol, 2023, 11: 1110225. |
[51] |
JIAO Z, PAN Y, CHEN F. The metabolic landscape of breast cancer and its therapeutic implications[J]. Mol Diagn Ther, 2023, 27(3): 349-369.
doi: 10.1007/s40291-023-00645-2 |
[52] | CHEN M, CHEN Y. Bioinformatics analysis of common genetic and molecular traits and association of portal hypertension with pulmonary hypertension[J]. J Healthc Eng, 2022, 2022: 9237701. |
[53] |
RYBICKA M, VERRIER E R, BAUMERT T F, et al. Polymorphisms within DIO2 and GADD45A genes increase the risk of liver disease progression in chronic hepatitis b carriers[J]. Sci Rep, 2023, 13(1): 6124.
doi: 10.1038/s41598-023-32753-8 |
[54] |
YAO P B, ZHANG Z X, LIU H C, et al. P53 protects against alcoholic fatty liver disease via ALDH2 inhibition[J]. EMBO J, 2023, 42(8): e112304.
doi: 10.15252/embj.2022112304 |
[55] |
XU L, CHEN Z J, ZHANG Y, et al. P53 maintains gallid alpha herpesvirus 1 replication by direct regulation of nucleotide metabolism and ATP synthesis through its target genes[J]. Front Microbiol, 2022, 13: 1044141.
doi: 10.3389/fmicb.2022.1044141 |
[56] |
CHEN S M, DUAN Y M, WU Y H, et al. A novel integrated metabolism-immunity gene expression model predicts the prognosis of lung adenocarcinoma patients[J]. Front Pharmacol, 2021, 12: 728368.
doi: 10.3389/fphar.2021.728368 |
[57] |
KEALEY J, DÜSSMANN H, LLORENTE-FOLCH I, et al. Effect of TP53 deficiency and KRAS signaling on the bioenergetics of colon cancer cells in response to different substrates: a single cell study[J]. Front Cell Dev Biol, 2022, 10: 893677.
doi: 10.3389/fcell.2022.893677 |
[58] |
JACOBERGER-FOISSAC C, COUSINEAU I, BARECHE Y, et al. CD73 inhibits cGAS-STING and cooperates with CD39 to promote pancreatic cancer[J]. Cancer Immunol Res, 2023, 11(1): 56-71.
doi: 10.1158/2326-6066.CIR-22-0260 |
[59] |
RATHER G M, PRAMONO A A, SZEKELY Z, et al. In cancer, all roads lead to NADPH[J]. Pharmacol Ther, 2021, 226: 107864.
doi: 10.1016/j.pharmthera.2021.107864 |
[60] |
MIKI K, YAGI M, NOGUCHI N, et al. Induction of glioblastoma cell ferroptosis using combined treatment with chloramphenicol and 2-deoxy-D-glucose[J]. Sci Rep, 2023, 13(1): 10497.
doi: 10.1038/s41598-023-37483-5 pmid: 37380755 |
[61] |
WANG K, LUO L, FU S Y, et al. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma[J]. Nat Commun, 2023, 14(1): 1011.
doi: 10.1038/s41467-023-36708-5 pmid: 36823188 |
[62] | SHI T Z, YUAN Z H, HE Y Y, et al. Competition between p53 and YY1 determines PHGDH expression and malignancy in bladder cancer[J]. Cell Oncol (Dordr), 2023: 46(5): 1457-1472. |
[63] |
SONG X M, CHEN Q, WANG J F, et al. Clinical and prognostic implications of an immune-related risk model based on TP53 status in lung adenocarcinoma[J]. J Cell Mol Med, 2022, 26(2): 436-448.
doi: 10.1111/jcmm.v26.2 |
[64] |
ZAVILEYSKIY L, BUNIK V. Regulation of p53 function by formation of non-nuclear heterologous protein complexes[J]. Biomolecules, 2022, 12(2): 327.
doi: 10.3390/biom12020327 |
[65] |
INDEGLIA A, LEUNG J C, MILLER S A, et al. An African-specific variant of TP53 reveals PADI4 as a regulator of p53-mediated tumor suppression[J]. Cancer Discov, 2023, 13(7): 1696-1719.
doi: 10.1158/2159-8290.CD-22-1315 |
[1] | 孙洋, 王炼, 赵萌, 张小凤, 耿志军, 王月月, 宋雪, 左芦根, 李静, 胡建国. 胃癌中FKBP1A高表达的预后价值及其靶向PI3K/AKT对糖代谢的调控作用[J]. 中国癌症杂志, 2023, 33(8): 726-739. |
[2] | 邹淳缘, 许晓峰, 卢仁泉, 郭林. 肺癌组织和外周血中p53、PGP9.5、SOX2、GAGE7、GBU4-5和MAGE A1蛋白水平检测及其临床价值探讨[J]. 中国癌症杂志, 2023, 33(1): 36-44. |
[3] | 朱小坚, 林 康, 卜凡钦, 骆 晨, 黄 超, 朱正明. DJ-1的高表达通过cyclin D1/p53-MDM2-AKT途径促进结直肠癌细胞的增殖、侵袭[J]. 中国癌症杂志, 2020, 30(3): 208-216. |
[4] | 任春霞,夏小艾,杨树东,吕 蓓,童国庆 . 一株永生化的BRCA1突变型人卵巢表面上皮细胞系的建立及初步分析[J]. 中国癌症杂志, 2019, 29(9): 693-699. |
[5] | 董一楠,孔凡铭,张新伟,等. 癌基因iASPP-SV参与乳腺癌的形成[J]. 中国癌症杂志, 2016, 26(10): 831-839. |
[6] | 姜琪琪,张红梅,郭爱,等. Δ133p53表达状态对rmhTNF效应的影响及机制研究[J]. 中国癌症杂志, 2015, 25(4): 287-293. |
[7] | 顾史洋,邹善华,李 锋,等. 伴PET/CT骨髓弥漫性糖代谢增高的淋巴瘤患者骨髓浸润情况及相关因素分析[J]. 中国癌症杂志, 2015, 25(10): 796-801. |
[8] | 刘 霏,李浩然,程 玺,等. 蟾蜍灵对宫颈癌细胞的增殖抑制作用及其机制研究[J]. 中国癌症杂志, 2015, 25(10): 780-784. |
[9] | 郭爱,季万胜,姜琪琪等. Δ133p53异构体在5-FU抑制胃癌MKN45细胞系生长实验中的作用[J]. 中国癌症杂志, 2015, 25(1): 25-30. |
[10] | 贾晓青,洪琪,程竞仪,李剑伟,王玉洁,莫淼,邵志敏,沈镇宙,柳光宇. P53蛋白过表达可预测雌激素受体阳性,早期绝经后乳腺癌对芳香化酶抑制剂治疗的敏感性[J]. 中国癌症杂志, 2014, 24(5): 354-360. |
[11] | 吴又明,丁彦青,李纳,王金生,郭周庆,冷雷,黄东. 结直肠锯齿状腺瘤、传统腺瘤及结直肠癌中端粒酶、p53及Ki-67的表达比较[J]. 中国癌症杂志, 2013, 23(7): 519-523. |
[12] | 高雯,臧荣余,王雁,杨丽娜,刘杨,亓子豪,尹胜,杨恭. 人类输卵管上皮永生化细胞系的建立及鉴定[J]. 中国癌症杂志, 2013, 23(4): 241-247. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn