中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (1): 58-67.doi: 10.19401/j.cnki.1007-3639.2025.01.007
收稿日期:
2024-12-13
修回日期:
2025-01-21
出版日期:
2025-01-30
发布日期:
2025-02-17
通信作者:
林承赫
作者简介:
林秋玉(ORCID: 0000-0002-6925-184X),博士,副主任医师、副教授。基金资助:
LIN Qiuyu(), WANG Yuxin, LIN Chenghe(
)
Received:
2024-12-13
Revised:
2025-01-21
Published:
2025-01-30
Online:
2025-02-17
Contact:
LIN Chenghe
Supported by:
文章分享
摘要:
甲状腺癌(thyroid cancer,TC)是一种常见的内分泌系统恶性肿瘤,其中分化型TC(differentiated TC,DTC)占90%以上,通常大多数患者在接受放射性碘(radioactive iodine,RAI)治疗后总体预后良好,但仍有部分患者的病灶在治疗过程中逐渐丧失摄碘能力,成为RAI难治性DTC(radioiodine-refractory DTC,RAIR-DTC),预后较差。对于无法手术切除的RAIR-DTC复发病灶或远处转移灶,既往认为治疗方式有限。随着对RAIR-DTC的发生机制及其生物分子层面的改变有了更深的认识,靶向治疗、免疫治疗及靶向治疗联合免疫治疗呈现出广阔的应用前景,其有效性和安全性也在人类研究中被证实,为RAIR-DTC治疗带来新的希望。本文概括了RAIR-DTC的发生、发展机制、靶向治疗与免疫治疗的临床研究现状及其主要结论,以期为今后的研究提供方向。多激酶抑制剂(multiple kinase inhibitors,MKIs)是晚期转移性RAIR-DTC的一线治疗方案。目前被美国食品药品管理局(Food and Drug Administration,FDA)批准用于治疗RAIR-DTC的药物包括索拉非尼(sorafenib)、仑伐替尼(lenvatinib)、卡博替尼(cabozantinib),前两者也被中国国家药品监督管理局批准用于RAIR-DTC的治疗。中国还有安罗替尼(anlotinib)、多纳非尼(donafenib)被批准用于RAIR-DTC的治疗。以上靶向药物的有效性和安全性均得到了验证。阿帕替尼(apatinib)是一种中国自主研发的血管生成抑制剂,有望成为sorafenib耐药时有效的挽救治疗方法。而单靶点选择性抑制剂因作用靶点单一,不良反应通常较轻。对于某些含有特定突变类型的RAIR-DTC,单靶点选择性抑制剂可以更好地发挥效果。TC通常被认为肿瘤突变负荷(tumor mutation burden,TMB)较低,既往认为免疫治疗的效果有限。包括帕博利珠单抗(pembrolizumab)、度伐利尤单抗(durvalumab)、阿特珠单抗(atezolizumab)、伊匹单抗(ipilimumab)在内的免疫检查点抑制剂,单独使用时疗效常不理想。当联合靶向治疗时,pembrolizumab可以增强靶向药物的疗效,可作为一种可行的挽救疗法,这可能与靶向治疗联合免疫治疗的“协同效应”有关。对于联合治疗,各种治疗分别对抑制肿瘤、延长患者生存期发挥了多大作用需要明确,特别是在病例数较少的情况下,如何设计合理的对照成为关键。既往研究受限于RAIR-DTC定义模糊、纳入患者量少且异质性大,未来需要开展前瞻性、多中心、大规模的临床试验。同时,还需要考虑治疗后延长的无进展生存期(progression-free survival,PFS)是否能转化为长期生存获益,以及是否能改善患者的生活质量。总之,RAIR-DTC的治疗仍面临诸多挑战,未来需要在这些方面不断探索和研究。
中图分类号:
林秋玉, 王宇鑫, 林承赫. 靶向治疗与免疫治疗在放射性碘难治性分化型甲状腺癌中的应用与前景[J]. 中国癌症杂志, 2025, 35(1): 58-67.
LIN Qiuyu, WANG Yuxin, LIN Chenghe. Application and prospect of targeted therapy and immunotherapy in radioiodine-refractory differentiated thyroid cancer[J]. China Oncology, 2025, 35(1): 58-67.
表1
针对MKIs治疗RAIR-DTC的疗效和不良反应的Ⅱ或Ⅲ期临床试验"
Drug | TC type | Trial type | Patients and treatment | Efficacy | Adverse events in drug group | Reference |
---|---|---|---|---|---|---|
Sorafenib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=417; sorafenib (400 mg, twice a day), N=207; placebo, N=210 | PFS: 10.8 months (sorafenib) vs 5.8 months (placebo), HR=0.59, P <0.000 1 | Hand-foot syndrome (76.3%), diarrhea (68.6%), alopecia (67.1%), rash or desquamation (50.2%) | [ |
Lenvatinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=392; lenvatinib (20 mg, once a day), N=261; placebo, N=131 | PFS: 18.3 months (lenvatinib) vs 3.6 months (placebo), P<0.001; ORR: 64.8% (lenvatinib 1.5% (placebo), P<0.001 | Hypertension (67.8%), diarrhea (59.4%), fatigue or asthenia (59.0%), decreased appetite (50.2%), decreased weight (46.4%), nausea (41.0%) | [ |
Lenvatinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=151; lenvatinib (24 mg, once a day), N=103; placebo, N=48 | PFS: 23.9 months (Lenvatinib) vs 3.7 months (placebo), P <0.000 1; ORR: 69.9% (lenvatinib) vs 0.0% (placebo), P <0.000 1 | Hypertension (62.1%), proteinuria (23.3%) | [ |
Cabozantinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=258; cabozantinib (60 mg, once a day), N=170; placebo, N=88 | PFS: 11.0 months (cabozantinib) vs 1.9 months (placebo), HR=0.22, P<0.000 1; ORR: 11.0% (Cabozantinib) vs 0% (Placebo), P=0.000 3 | Hypertension (12%), hand-foot syndrome (10%), fatigue (9%) | [ |
Anlotinib vs placebo | RAIR-DTC | Phase Ⅱ | Total, N=113; anlotinib (12 mg, once a day), N=76; placebo, N=37 | PFS: 40.5 months (anlotinib) vs 8.4 months (placebo), HR=0.21, P <0.001 | Hand-foot syndrome (9%), hypertension (8%), proteinuria (5%) | [ |
Donafenib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=191; donafenib (300 mg, twice a day), N=128; placebo, N=63 | PFS: 12.9 months (donafenib) vs 6.4 months (placebo), HR=0.39, P<0.000 1; ORR: 23.3% (Donafenib) vs 1.7% (Placebo), P=0.000 2 | Hypertension (13.3%), hand-foot syndrome (12.5%) | [ |
Apatinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=92; apatinib (500 mg, once a day), N=46; placebo, N=46 | PFS: 22.2 months (apatinib) vs 4.5 months (placebo); HR=0.26, P <0.001; ORR: 54.3% (apatinib) vs 2.2% (placebo) | Hypertension (34.8%), hand-foot syndrome (17.4%), proteinuria (15.2%), diarrhea (15.2%) | [ |
[1] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. |
[2] | MAO Y S, XING M Z. Recent incidences and differential trends of thyroid cancer in the USA[J]. Endocr Relat Cancer, 2016, 23(4): 313-322. |
[3] | HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133. |
[4] | 中国临床肿瘤学会核医学专家委员会, 中国临床肿瘤学会甲状腺癌专家委员会, 中华医学会核医学分会, 等. 放射性碘难治性分化型甲状腺癌诊治管理指南(2024版)[J]. 中华核医学与分子影像杂志, 2024, 44(6): 359-372. |
Nuclear Medicine Expert Committee of Chinese Society of Clinical Oncology, Thyroid Cancer Expert Committee of Chinese Society of Clinical Oncology, Thyroid Cancer Expert Committee of Chinese Society of Clinical Oncology, Chinese Society of Nuclear Medicine, et al. Management guidelines for radioactive iodine-refractory differentiated thyroid cancer (2024 edition)[J]. Chin J Nucl Med Mol Imag, 2024, 44(6): 359-372. | |
[5] | VAN NOSTRAND D, VEYTSMAN I, KULKARNI K, et al. Redifferentiation of differentiated thyroid cancer: clinical insights from a narrative review of literature[J]. Thyroid, 2023, 33(6): 674-681. |
[6] | BROSE M S, SMIT J, CAPDEVILA J, et al. Regional approaches to the management of patients with advanced, radioactive iodine-refractory differentiated thyroid carcinoma[J]. Expert Rev Anticancer Ther, 2012, 12(9): 1137-1147. |
[7] | YAVUZ S, PUCKETT Y. Iodine-131 uptake study[M], StatPearls. Treasure Island: StatPearls Publishing, 2023. |
[8] |
HOU P, BOJDANI E, XING M Z. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways[J]. J Clin Endocrinol Metab, 2010, 95(2): 820-828.
doi: 10.1210/jc.2009-1888 pmid: 20008023 |
[9] | ZHANG Z J, LIU D X, MURUGAN A K, et al. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer[J]. Endocr Relat Cancer, 2014, 21(2): 161-173. |
[10] | NAGARAJAH J, LE M N, KNAUF J A, et al. Sustained ERK inhibition maximizes responses of Braf V600E thyroid cancers to radioiodine[J]. J Clin Invest, 2016, 126(11): 4119-4124. |
[11] | LAHA D, NILUBOL N, BOUFRAQECH M. New therapies for advanced thyroid cancer[J]. Front Endocrinol (Lausanne), 2020, 11: 82. |
[12] |
HAROON AL, RASHEED M R, XU B. Molecular alterations in thyroid carcinoma[J]. Surg Pathol Clin, 2019, 12(4): 921-930.
doi: S1875-9181(19)30058-3 pmid: 31672298 |
[13] |
XING M Z. Identifying genetic alterations in poorly differentiated thyroid cancer: a rewarding pursuit[J]. J Clin Endocrinol Metab, 2009, 94(12): 4661-4664.
doi: 10.1210/jc.2009-2147 pmid: 19959752 |
[14] | MIZUKAMI T, SHIRAISHI K, SHIMADA Y, et al. Molecular mechanisms underlying oncogenic RET fusion in lung adenocarcinoma[J]. J Thorac Oncol, 2014, 9(5): 622-630. |
[15] | YANG X, LI J, LI X Y, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer[J]. J Nucl Med, 2017, 58(2): 258-265. |
[16] |
ARAQUE K A, GUBBI S, KLUBO-GWIEZDZINSKA J. Updates on the management of thyroid cancer[J]. Horm Metab Res, 2020, 52(8): 562-577.
doi: 10.1055/a-1089-7870 pmid: 32040962 |
[17] | TUCCILLI C, BALDINI E, SORRENTI S, et al. CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers[J]. Int J Endocrinol, 2018, 2018: 1742951. |
[18] |
CUNHA L L, MARCELLO M A, VASSALLO J, et al. Differentiated thyroid carcinomas and their B7H1 shield[J]. Future Oncol, 2013, 9(10): 1417-1419.
doi: 10.2217/fon.13.89 pmid: 23651132 |
[19] | AL-ABDALLAH A, JAHANBANI I, MEHDAWI H, et al. Down-regulation of the human major histocompatibility complex class Ⅰ chain-related gene A (MICA) and its receptor is mediated by microRNA-146b-5p and is a potential mechanism of immunoediting in papillary thyroid carcinoma[J]. Exp Mol Pathol, 2020, 113: 104379. |
[20] | ULISSE S, TUCCILLI C, SORRENTI S, et al. PD-1 ligand expression in epithelial thyroid cancers: potential clinical implications[J]. Int J Mol Sci, 2019, 20(6): 1405. |
[21] | BASTOS A U, OLER G, NOZIMA B H N, et al. BRAF V600E and decreased NIS and TPO expression are associated with aggressiveness of a subgroup of papillary thyroid microcarcinoma[J]. Eur J Endocrinol, 2015, 173(4): 525-540. |
[22] |
CORRADO A, FERRARI S M, POLITTI U, et al. Aggressive thyroid cancer: targeted therapy with sorafenib[J]. Minerva Endocrinol, 2017, 42(1): 64-76.
doi: 10.23736/S0391-1977.16.02229-X pmid: 26112458 |
[23] | SHEN H Z, ZHU R, LIU Y Y, et al. Radioiodine-refractory differentiated thyroid cancer: molecular mechanisms and therapeutic strategies for radioiodine resistance[J]. Drug Resist Updat, 2024, 72: 101013. |
[24] |
BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328.
doi: 10.1016/S0140-6736(14)60421-9 pmid: 24768112 |
[25] |
DACOSTA BYFIELD S A, ADEJORO O, COPHER R, et al. Real-world treatment patterns among patients initiating small molecule kinase inhibitor therapies for thyroid cancer in the United States[J]. Adv Ther, 2019, 36(4): 896-915.
doi: 10.1007/s12325-019-0890-6 pmid: 30820872 |
[26] | SILAGHI H, LOZOVANU V, GEORGESCU C E, et al. State of the art in the current management and future directions of targeted therapy for differentiated thyroid cancer[J]. Int J Mol Sci, 2022, 23(7): 3470. |
[27] | SCHLUMBERGER M, TAHARA M, WIRTH L J, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630. |
[28] | ZHENG X Q, XU Z G, JI Q H, et al. A randomized, phase Ⅲ study of lenvatinib in Chinese patients with radioiodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2021, 27(20): 5502-5509. |
[29] |
BROSE M S, ROBINSON B G, SHERMAN S I, et al. Cabozantinib for previously treated radioiodine-refractory differentiated thyroid cancer: Updated results from the phase 3 COSMIC-311 trial[J]. Cancer, 2022, 128(24): 4203-4212.
doi: 10.1002/cncr.34493 pmid: 36259380 |
[30] | CAPDEVILA J, KRAJEWSKA J, HERNANDO J, et al. Increased progression-free survival with cabozantinib versus placebo in patients with radioiodine-refractory differentiated thyroid cancer irrespective of prior vascular endothelial growth factor receptor-targeted therapy and tumor histology: a subgroup analysis of the COSMIC-311 study[J]. Thyroid, 2024, 34(3): 347-359. |
[31] | CHI Y, ZHENG X Q, ZHANG Y, et al. Anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: a randomized, double-blind, multicenter phase Ⅱ trial[J]. Clin Cancer Res, 2023, 29(20): 4047-4056. |
[32] | 李娇, 韩娜, 卢承慧, 等. 安罗替尼治疗远处转移性放射性碘难治性分化型甲状腺癌的有效性及安全性分析[J]. 中华核医学与分子影像杂志, 2023, 43(8): 470-474. |
LI J, HAN N, LU C H, et al. Efficacy and safety analysis of anlotinib in the treatment of distant metastatic radioactive iodine-refractory differentiated thyroid cancer[J]. Chin J Nucl Med Mol Imag, 2023, 43(8): 470-474. | |
[33] | 张芳蕾, 翟红彦, 闫瑞红, 等. 安罗替尼对进展期放射性碘难治性分化型甲状腺癌的疗效及对病灶摄碘功能的影响[J]. 中华核医学与分子影像杂志, 2024, 44(10): 592-596. |
ZHANG F L, ZHAI H Y, YAN R H, et al. Efficacy of anlotinib in the treatment of advanced radioactive iodine-refractory differentiated thyroid cancer and the effect on iodine uptake of lesions[J]. Chin J Nucl Med Mol Imag, 2024, 44(10): 592-596. | |
[34] | LIU Y J, WANG J F, HU X P, et al. Radioiodine therapy in advanced differentiated thyroid cancer: resistance and overcoming strategy[J]. Drug Resist Updat, 2023, 68: 100939. |
[35] | LIN Y S, YANG H, DING Y, et al. Donafenib in progressive locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer: results of a randomized, multicenter phase II trial[J]. Thyroid, 2021, 31(4): 607-615. |
[36] | LIN Y S, QIN S K, YANG H, et al. Multicenter randomized double-blind phase Ⅲ trial of donafenib in progressive radioactive iodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2023, 29(15): 2791-2799. |
[37] | LIN Y S, QIN S K, LI Z Y, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial[J]. JAMA Oncol, 2022, 8(2): 242-250. |
[38] | 刘杰蕊, 张鑫, 孙郁青, 等. BRAF V600E突变辅助预测放射性碘难治性分化型甲状腺癌阿帕替尼治疗效果的意义[J]. 中华核医学与分子影像杂志, 2023, 43(8): 465-469. |
LIU J R, ZHANG X, SUN Y Q, et al. Significance of BRAF V600E mutation in prediction of the efficacy of apatinib for radioactive iodine-refractory differentiated thyroid cancer\n[J]. Chin J Nucl Med Mol Imag, 2023, 43(8): 465-469. | |
[39] | QIU X, CHENG L, SA R, et al. Initial or salvage treatment with apatinib shows promise against radioiodine-refractory differentiated thyroid carcinoma[J]. Eur Thyroid J, 2022, 11(2): e210065. |
[40] | DUNN L A, SHERMAN E J, BAXI S S, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. |
[41] | MICHAEL ROTHENBERG S, MCFADDEN D G, PALMER E L, et al. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib[J]. Clin Cancer Res, 2015, 21(5): 1028-1035. |
[42] | HO A L, GREWAL R K, LEBOEUF R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632. |
[43] | BUSAIDY N L, KONDA B, WEI L, et al. Dabrafenib versus dabrafenib+trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial[J]. Thyroid, 2022, 32(10): 1184-1192. |
[44] | SHI B, MA W B, PAN H S, et al. Cost-effectiveness of apatinib and cabozantinib for the treatment of radioiodine-refractory differentiated thyroid cancer[J]. Front Pharmacol, 2022, 13: 860615. |
[45] | WANG X S, LI M Y. Correlate tumor mutation burden with immune signatures in human cancers[J]. BMC Immunol, 2019, 20(1): 4. |
[46] | PINHEIRO NETO A, LUCCHESI H L, VALSECCHI V A D S, et al. Immunotherapy for patients with thyroid cancer: a comprehensive appraisal[J]. Chin Clin Oncol, 2024, 13(3): 36. |
[47] |
NIKIFOROV Y E, NIKIFOROVA M N. Molecular genetics and diagnosis of thyroid cancer[J]. Nat Rev Endocrinol, 2011, 7(10): 569-580.
doi: 10.1038/nrendo.2011.142 pmid: 21878896 |
[48] | WANG S M, KHAN F I. Investigation of molecular interactions mechanism of pembrolizumab and PD-1[J]. Int J Mol Sci, 2023, 24(13): 10684. |
[49] | MEHNERT J M, VARGA A, BROSE M S, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer[J]. BMC Cancer, 2019, 19(1): 196. |
[50] | OH D Y, ALGAZI A, CAPDEVILA J, et al. Efficacy and safety of pembrolizumab monotherapy in patients with advanced thyroid cancer in the phase 2 KEYNOTE-158 study[J]. Cancer, 2023, 129(8): 1195-1204. |
[51] | PAZ-ARES L, DVORKIN M, CHEN Y B, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2019, 394(10212): 1929-1939. |
[52] | BURMAN B, SHERMAN E J, KRIPLANI A, et al. Radioiodine (RAI) in combination with durvalumab for recurrent/metastatic thyroid cancers[J]. J Clin Oncol, 2020, 38(15_suppl): 6587. |
[53] | WÄCHTER S, KNAUFF F, ROTH S, et al. Synergic induction of autophagic cell death in anaplastic thyroid carcinoma[J]. Cancer Invest, 2023, 41(4): 405-421. |
[54] | TABERNERO J, ANDRE F, BLAY J Y, et al. Phase Ⅱ multicohort study of atezolizumab monotherapy in multiple advanced solid cancers[J]. ESMO Open, 2022, 7(2): 100419. |
[55] | WANG Y C, ZHANG H, LIU C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts[J]. J Hematol Oncol, 2022, 15(1): 111. |
[56] |
SAKAMURI D, GLITZA I C, BETANCOURT CUELLAR S L, et al. Phase I dose-escalation study of anti-CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers[J]. Mol Cancer Ther, 2018, 17(3): 671-676.
doi: 10.1158/1535-7163.MCT-17-0673 pmid: 29237802 |
[57] | BARBARI C, FONTAINE T, PARAJULI P, et al. Immunotherapies and combination strategies for immuno-oncology[J]. Int J Mol Sci, 2020, 21(14): 5009. |
[58] | LORCH J H, BARLETTA J A, NEHS M, et al. A phase II study of nivolumab (N) plus ipilimumab (I) in radioidine refractory differentiated thyroid cancer (RAIR DTC) with exploratory cohorts in anaplastic (ATC) and medullary thyroid cancer (MTC)[J]. J Clin Oncol, 2020, 38(15_suppl): 6513. |
[59] | SHENG X Y. Evaluation of safety and therapeutic efficacy of CAR-T therapy[J]. Highlights Sci Eng Technol, 2024, 91: 272-276. |
[60] | LI H N, ZHOU X, WANG G, et al. CAR-T cells targeting TSHR demonstrate safety and potent preclinical activity against differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2022, 107(4): 1110-1126. |
[61] |
MIN I M, SHEVLIN E, VEDVYAS Y, et al. CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors[J]. Clin Cancer Res, 2017, 23(24): 7569-7583.
doi: 10.1158/1078-0432.CCR-17-2008 pmid: 29025766 |
[62] | HAUGEN B, FRENCH J, WORDEN F P, et al. Lenvatinib plus pembrolizumab combination therapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC): results of a multicenter phase Ⅱ International Thyroid Oncology Group trial[J]. J Clin Oncol, 2020, 38(15_suppl): 6512. |
[63] | HAUGEN B, FRENCH J D, WORDEN F, et al. Pembrolizumab salvage add-on therapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC) progressing on lenvatinib: results of a multicenter phase Ⅱ International Thyroid Oncology Group trial[J]. Ann Oncol, 2020, 31: S1086-S1087. |
[64] | FRENCH J D, HAUGEN B R, WORDEN F P, et al. Combination targeted therapy with pembrolizumab and lenvatinib in progressive, radioiodine-refractory differentiated thyroid cancers[J]. Clin Cancer Res, 2024, 30(17): 3757-3767. |
[65] | LI J Y, ZHANG X, MU Z Z, et al. Response to apatinib and camrelizumab combined treatment in a radioiodine refractory differentiated thyroid cancer patient resistant to prior anti-angiogenic therapy: a case report and literature review[J]. Front Immunol, 2022, 13: 943916. |
[66] |
VANNEMAN M, DRANOFF G. Combining immunotherapy and targeted therapies in cancer treatment[J]. Nat Rev Cancer, 2012, 12(4): 237-251.
doi: 10.1038/nrc3237 pmid: 22437869 |
[67] |
ACKERMAN A, KLEIN O, MCDERMOTT D F, et al. Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors[J]. Cancer, 2014, 120(11): 1695-1701.
doi: 10.1002/cncr.28620 pmid: 24577748 |
[68] | BONI A, COGDILL A P, DANG P, et al. Selective BRAF V600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function[J]. Cancer Res, 2010, 70(13): 5213-5219. |
[69] |
SUMIMOTO H, IMABAYASHI F, IWATA T, et al. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells[J]. J Exp Med, 2006, 203(7): 1651-1656.
doi: 10.1084/jem.20051848 pmid: 16801397 |
[1] | 耿倩倩, 杨爱民. 碘难治性分化型甲状腺癌的治疗进展及展望[J]. 中国癌症杂志, 2025, 35(1): 30-39. |
[2] | 李汝平, 杨辉. 放射性碘难治性甲状腺癌的临床试验现状及未来展望[J]. 中国癌症杂志, 2025, 35(1): 40-48. |
[3] | 冯欣滢, 王冰, 刘培峰. 腹膜转移癌腹腔化疗的创新与挑战[J]. 中国癌症杂志, 2024, 34(9): 827-837. |
[4] | 伍雯, 张若昕, 翁俊勇, 马延磊, 蔡国响, 李心翔, 杨永志. 探索阳性淋巴结比率在ypⅢ期结直肠癌患者中的预后价值及预测模型的建立[J]. 中国癌症杂志, 2024, 34(9): 873-880. |
[5] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[6] | 肖锋, 许桐林, 朱琳, 肖静文, 吴天祺, 顾春燕. M1型肿瘤相关巨噬细胞在肝细胞癌组织中浸润的意义[J]. 中国癌症杂志, 2024, 34(8): 726-733. |
[7] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[8] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[9] | 廖梓伊, 彭杨, 曾蓓蕾, 马影颖, 曾丽, 甘科论, 马代远. 局部晚期食管鳞状细胞癌患者新辅助免疫治疗联合化疗后行根治性手术的术后病理学缓解程度及影响因素分析[J]. 中国癌症杂志, 2024, 34(7): 669-679. |
[10] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[11] | 黄思捷, 康勋, 李文斌. 鞘内注射治疗实体瘤脑膜转移的临床研究进展[J]. 中国癌症杂志, 2024, 34(7): 695-701. |
[12] | 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560. |
[13] | 张若昕, 叶紫岚, 翁俊勇, 李心翔. 高龄与Ⅱ期结直肠癌患者预后不良的相关性研究[J]. 中国癌症杂志, 2024, 34(5): 485-492. |
[14] | 辛美仪, 林玉红, 赵凯. 肿瘤mRNA疫苗及其递送载体在抗肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(5): 509-516. |
[15] | 林艺聪, 王悦, 薛倩倩, 郑强, 金燕, 黄子凌, 李媛. EGFR T790M突变非小细胞肺癌患者的临床病理学、免疫微环境特征及对预后预测的意义[J]. 中国癌症杂志, 2024, 34(4): 368-379. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn