China Oncology ›› 2023, Vol. 33 ›› Issue (10): 898-907.doi: 10.19401/j.cnki.1007-3639.2023.10.002
• Article • Previous Articles Next Articles
JIANG Jianyun1,2,3(), ZHAI Ruiping1,2,3, YING Hongmei1,2,3(
)
Received:
2023-06-12
Revised:
2023-09-19
Online:
2023-10-30
Published:
2023-10-31
Contact:
YING Hongmei.
Share article
CLC Number:
JIANG Jianyun, ZHAI Ruiping, YING Hongmei. Impact of body dose parameters on circulating immune cells in locally advanced nasopharyngeal carcinoma patients: a retrospective cohort study[J]. China Oncology, 2023, 33(10): 898-907.
Tab. 1
Characteristics of all patients"
Characteristics | Overall (n = 423) | Characteristics | Overall (n = 423) | |
---|---|---|---|---|
Gender n (%) | Concurrent chemotherapy n (%) | |||
Female | 110 (26.0) | Yes | 104 (24.6) | |
Male | 313 (74.0) | No | 319 (75.4) | |
Age, median (IQR) | 49 (40, 57) | Adjuvant chemotherapy n (%) | ||
Overall stage n (%) | Yes | 179 (42.3) | ||
Ⅲ | 168 (39.7) | No | 244 (57.7) | |
ⅣA | 255 (60.3) | Dose to PTV-G (Gy) n (%) | ||
T stage | 66.0 | 88 (20.8) | ||
T1 | 23 (5.4) | 70.4 | 335 (79.2) | |
T2 | 113 (26.7) | ΔWBC n (%) | ||
T3 | 176 (41.6) | <25.5% | 211 (49.9) | |
T4 | 111 (26.2) | ≥25.5% | 212 (50.1) | |
N stage | ΔLYM n (%) | |||
N0 | 6 (1.4) | <77.0% | 206 (48.7) | |
N1 | 76 (18.0) | ≥77.0% | 217 (51.3) | |
N2 | 169 (40.0) | ΔMONO n (%) | ||
N3 | 172 (40.7) | <28.5% | 211 (49.9) | |
Pathological type n (%) | ≥28.5% | 212 (50.1) | ||
Non-keratinized differentiated | 10 (2.4) | ΔNEU n (%) | ||
Non-keratinized undifferentiated | 413 (97.6) | <22.6% | 211 (49.9) | |
Induction chemotherapy n (%) | ≥22.6% | 212 (50.1) | ||
Yes | 286 (67.6) | ΔPLT n (%) | ||
No | 137 (32.4) | 17.0% | 211 (49.9) | |
≥17.0% | 212 (50.1) |
Tab. 2
Multivariable Cox regression analyses for OS, LRFS, and DMFS"
Characteristics | OS | LRFS | DMFS | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | P value | HR (95% CI) | P value | HR (95% CI) | P value | |||
Gender (male vs female) (male vs female) | - | - | - | - | 1.81 (0.92-3.58) | 0.087 | ||
Age | 1.05 (1.02-1.07) | <0.001 | 1.02 (0.99-1.04) | 0.144 | - | - | ||
TNM Ⅳa vs TMN Ⅲ (ⅣA vs Ⅲ) | 3.08 (1.72-5.51) | <0.001 | 2.61 (1.32-5.17) | 0.006 | 2.06 (1.56-4.40) | 0.023 | ||
Induction chemotherapy | 0.26 (0.15-0.46) | <0.001 | 0.39 (0.24-0.64) | <0.001 | 0.25 (0.15-0.41) | < 0.001 | ||
Concurrent chemotherapy | - | - | - | - | - | - | ||
Adjuvant chemotherapy | 0.50 (0.27-0.93) | 0.028 | - | - | - | - | ||
PTV-G (70.4 vs 60.0 Gy) | - | - | - | - | - | - | ||
ΔWBC% | - | - | - | - | - | - | ||
ΔLYM% | 1.18 (1.02-2.32) | 0.043 | 1.13 (1.08-1.64) | 0.028 | 1.31 (1.09-2.50) | 0.011 | ||
ΔMONO% | 1.03 (1.01-2.01) | 0.047 | - | - | 1.17 (1.02-2.07) | 0.021 | ||
ΔNEU% | - | - | 1.60 (0.99-2.59) | 0.055 | - | - | ||
ΔPLT% | - | - | - | - | - | - |
Tab. 3
Logistic regression analyses for percentage change in absolute lymphocyte count"
Characteristics | Univariable analysis | Multivariable analysis | |||
---|---|---|---|---|---|
Odds ratio (95% CI) | P value | Odds ratio (95% CI) | P value | ||
Gender | |||||
Female | Reference | ||||
Male | 0.925 (0.587-1.458) | 0.738 | - | - | |
Age | 1.070 (1.054-1.086) | <0.001 | 1.071 (1.054-1.087) | <0.001 | |
Overall stage | |||||
Ⅲ | Reference | ||||
ⅣA | 1.171 (0.778-1.761) | 0.449 | - | - | |
Induction chemotherapy | |||||
No | Reference | ||||
Yes | 1.290 (0.838-1.984) | 0.247 | - | - | |
Concurrent chemotherapy | |||||
No | Reference | ||||
Yes | 1.471 (0.925-2.339) | 0.103 | - | - | |
PTV-P | |||||
66.0 | Reference | ||||
70.4 | 1.066 (0.629-1.806) | 0.812 | - | - | |
MBD | 1.000 (1.000-1.000) | 0.129 | - | - | |
IBD | 1.004 (1.001-1.009) | 0.013 | 1.004 (1.001-1.010) | 0.037 | |
V5 | 1.002 (0.970-1.009) | 0.321 | - | - | |
V15 | 1.018 (0.967-1.111) | 0.317 | - | - | |
V45 | 1.019 (0.964-1.078) | 0.501 | - | - | |
V55 | 1.000 (0.937-1.067) | 0.989 | - | - | |
V60 | 1.068 (1.006-1.169) | 0.053 | 1.046 (1.030-1.154) | 0.036 | |
V65 | 1.003 (0.892-1.105) | 0.892 | - | - | |
V70 | 0.946 (0.765-1.171) | 0.612 | - | - |
Tab. 4
Logistic regression analyses for percentage change in absolute lymphocyte count"
Characteristics | Univariable analysis | Multivariable analysis | |||
---|---|---|---|---|---|
Odds ratio (95% CI) | P value | Odds ratio (95% CI) | P value | ||
Gender | |||||
Female | Reference | ||||
Male | 0.881 (0.540-1.439) | 0.612 | - | - | |
Age | 0.993 (0.976-1.010) | 0.399 | - | - | |
Overall stage | |||||
Ⅲ | Reference | Reference | |||
ⅣA | 0.668 (0.429-1.041) | 0.075 | 0.512 (0.275-0.954) | 0.035 | |
Induction chemotherapy | |||||
No | Reference | ||||
Yes | 0.899 (0.567-1.427) | 0.653 | - | - | |
Concurrent chemotherapy | |||||
No | Reference | ||||
Yes | 1.386 (0.835-2.299) | 0.207 | - | - | |
PTV-P | |||||
66.0 | Reference | ||||
70.4 | 1.082 (0.614-1.907) | 0.786 | - | - | |
MBD | 1.000 (1.000-1.001) | 0.224 | - | - | |
IBD | 0.997 (0.991-1.002) | 0.228 | - | - | |
V5 | 1.010 (0.990-1.032) | 0.327 | - | - | |
V55 | 1.068 (0.988-1.154) | 0.097 | 1.144 (1.034-1.265) | 0.009 | |
V70 | 0.827 (0.661-1.034) | 0.096 | 0.734 (0.564-0.957) | 0.022 |
[1] |
LEE A W M, MA B B Y, NG W T, et al. Management of nasopharyngeal carcinoma: current practice and future perspective[J]. J Clin Oncol, 2015, 33(29): 3356-3364.
doi: 10.1200/JCO.2015.60.9347 pmid: 26351355 |
[2] |
BLANCHARD P, LEE A, MARGUET S, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis[J]. Lancet Oncol, 2015, 16(6): 645-655.
doi: 10.1016/S1470-2045(15)70126-9 pmid: 25957714 |
[3] |
ZHANG M X, LI J, SHEN G P, et al. Intensity-modulated radiotherapy prolongs the survival of patients with nasopharyngeal carcinoma compared with conventional two-dimensional radiotherapy: a 10-year experience with a large cohort and long follow-up[J]. Eur J Cancer, 2015, 51(17): 2587-2595.
doi: 10.1016/j.ejca.2015.08.006 |
[4] |
SUN X M, SU S F, CHEN C Y, et al. Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities[J]. Radiother Oncol, 2014, 110(3): 398-403.
doi: 10.1016/j.radonc.2013.10.020 pmid: 24231245 |
[5] |
COLEVAS A D, YOM S S, PFISTER D G, et al. NCCN guidelines insights: head and neck cancers, version 1.2018[J]. J Natl Compr Canc Netw, 2018, 16(5): 479-490.
doi: 10.6004/jnccn.2018.0026 |
[6] | SUN W, ZHANG L L, LUO M, et al. Pretreatment hematologic markers as prognostic factors in patients with nasopharyngeal carcinoma: neutrophil-lymphocyte ratio and platelet-lymphocyte ratio[J]. Head Neck, 2016, 38(Suppl 1): E1332-E1340. |
[7] |
JIN T, LIU N F, JIN Q F, et al. Radiation dose escalation for locally advanced nasopharyngeal carcinoma patients with local and/or regional residual lesions after standard chemoradiotherapy: a non-randomized, observational study[J]. Radiat Oncol, 2022, 17(1): 176.
doi: 10.1186/s13014-022-02147-7 pmid: 36345003 |
[8] |
CORBEAU A, KUIPERS S C, DE BOER S M, et al. Correlations between bone marrow radiation dose and hematologic toxicity in locally advanced cervical cancer patients receiving chemoradiation with cisplatin: a systematic review[J]. Radiother Oncol, 2021, 164: 128-137.
doi: 10.1016/j.radonc.2021.09.009 pmid: 34560187 |
[9] |
ZHAI R P, KONG F F, DU C R, et al. Radiation-induced hypothyroidism after IMRT for nasopharyngeal carcinoma: clinical and dosimetric predictors in a prospective cohort study[J]. Oral Oncol, 2017, 68: 44-49.
doi: 10.1016/j.oraloncology.2017.03.005 |
[10] |
TERRONES-CAMPOS C, LEDERGERBER B, VOGELIUS I R, et al. Hematological toxicity in patients with solid malignant tumors treated with radiation-temporal analysis, dose response and impact on survival[J]. Radiother Oncol, 2021, 158: 175-183.
doi: 10.1016/j.radonc.2021.02.029 |
[11] |
LIU L T, LIANG Y J, GUO S S, et al. Identifying distinct risks of treatment failure in nasopharyngeal carcinoma: study based on the dynamic changes in peripheral blood lymphocytes, monocytes, N classification, and plasma Epstein-Barr virus DNA[J]. Head Neck, 2022, 44(1): 34-45.
doi: 10.1002/hed.v44.1 |
[12] |
TANG C, LIAO Z X, GOMEZ D, et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes[J]. Int J Radiat Oncol Biol Phys, 2014, 89(5): 1084-1091.
doi: 10.1016/j.ijrobp.2014.04.025 |
[13] |
JOSEPH N, MCWILLIAM A, KENNEDY J, et al. Post-treatment lymphocytopaenia, integral body dose and overall survival in lung cancer patients treated with radical radiotherapy[J]. Radiother Oncol, 2019, 135: 115-119.
doi: S0167-8140(19)30112-4 pmid: 31015156 |
[14] |
DAVULURI R, JIANG W, FANG P, et al. Lymphocyte nadir and esophageal cancer survival outcomes after chemoradiation therapy[J]. Int J Radiat Oncol Biol Phys, 2017, 99(1): 128-135.
doi: 10.1016/j.ijrobp.2017.05.037 |
[15] |
WEEKE E. The development of lymphopenia in uremic patients undergoing extracorporeal irradiation of the blood with portable beta units[J]. Radiat Res, 1973, 56(3): 554-559.
pmid: 4767134 |
[16] |
XIE X X, GONG S L, JIN H K, et al. Radiation-induced lymphopenia correlates with survival in nasopharyngeal carcinoma: impact of treatment modality and the baseline lymphocyte count[J]. Radiat Oncol, 2020, 15(1): 65.
doi: 10.1186/s13014-020-01494-7 pmid: 32169088 |
[17] |
HIRATA F, ISHIYAMA K, TANAKA Y, et al. Effect of bevacizumab plus XELOX (CapeOX) chemotherapy on liver natural killer cell activity in colorectal cancer with resectable liver metastasis[J]. Ann Gastroenterol Surg, 2018, 2(5): 383-393.
doi: 10.1002/ags3.12195 pmid: 30238080 |
[18] |
XIANG X Y, DING Z, ZENG Q, et al. Dosimetric parameters and absolute monocyte count can predict the prognosis of acute hematologic toxicity in cervical cancer patients undergoing concurrent chemotherapy and volumetric-modulated arc therapy[J]. Radiat Oncol, 2022, 17(1): 48.
doi: 10.1186/s13014-022-02018-1 |
[19] |
CHUA M L, TAN S H, KUSUMAWIDJAJA G, et al. Neutrophil-to-lymphocyte ratio as a prognostic marker in locally advanced nasopharyngeal carcinoma: a pooled analysis of two randomised controlled trials[J]. Eur J Cancer, 2016, 67: 119-129.
doi: 10.1016/j.ejca.2016.08.006 pmid: 27640138 |
[20] |
LI X H, CHANG H, XU B Q, et al. An inflammatory biomarker-based nomogram to predict prognosis of patients with nasopharyngeal carcinoma: an analysis of a prospective study[J]. Cancer Med, 2017, 6(1): 310-319.
doi: 10.1002/cam4.2017.6.issue-1 |
[21] | CHO O, OH Y T, CHUN M, et al. Minimum absolute lymphocyte count during radiotherapy as a new prognostic factor for nasopharyngeal cancer[J]. Head Neck, 2016, 38(Suppl 1): E1061-E1067. |
[22] |
LIU L T, CHEN Q Y, TANG L Q, et al. The prognostic value of treatment-related lymphopenia in nasopharyngeal carcinoma patients[J]. Cancer Res Treat, 2018, 50(1): 19-29.
doi: 10.4143/crt.2016.595 |
[23] |
VENKATESULU B P, MALLICK S, LIN S H, et al. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors[J]. Crit Rev Oncol Hematol, 2018, 123: 42-51.
doi: S1040-8428(17)30349-9 pmid: 29482778 |
[24] |
DU C R, NI M S, JIANG J Y, et al. Taxane/gemcitabine-containing chemotherapy plus locoregional IMRT for patients with de novo metastatic nasopharyngeal carcinoma: the treatment outcomes and prognostic factors analysis[J]. Eur Arch Otorhinolaryngol, 2022, 279(8): 3947-3956.
doi: 10.1007/s00405-021-07192-8 pmid: 34981158 |
[25] | LEE Y J, AUH S L, WANG Y G, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment[J]. Blood, 2009, 114(3): 589-595. |
[26] |
SO T H, LAM K O. The impact of the effective dose to immune cells on lymphopenia and survival of esophageal cancer after chemoradiotherapy: Asian perspectives in the immunotherapy era[J]. Radiother Oncol, 2020, 147: 144.
doi: 10.1016/j.radonc.2020.05.025 |
[27] |
RYBKINA V L, AZIZOVA T V, SCHERTHAN H, et al. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation[J]. Radiat Environ Biophys, 2014, 53(4): 659-670.
doi: 10.1007/s00411-014-0556-3 pmid: 25073961 |
[28] |
BALÁZS K, KIS E, BADIE C, et al. Radiotherapy-induced changes in the systemic immune and inflammation parameters of head and neck cancer patients[J]. Cancers (Basel), 2019, 11(9): 1324.
doi: 10.3390/cancers11091324 |
[29] |
LUO-OWEN X, PECAUT M J, RIZVI A, et al. Low-dose total-body γ irradiation modulates immune response to acute proton radiation[J]. Radiat Res, 2012, 177(3): 251-264.
doi: 10.1667/RR2785.1 |
[30] |
WANG L J, GUO Y S, XU J H, et al. Clinical analysis of recurrence patterns in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy[J]. Ann Otol Rhinol Laryngol, 2017, 126(12): 789-797.
doi: 10.1177/0003489417734229 |
[31] |
SANFORD N N, LAU J, LAM M B, et al. Individualization of clinical target volume delineation based on stepwise spread of nasopharyngeal carcinoma: Outcome of more than a decade of clinical experience[J]. Int J Radiat Oncol Biol Phys, 2019, 103(3): 654-668.
doi: 10.1016/j.ijrobp.2018.10.006 |
[32] |
BYUN H K, KIM N, YOON H I, et al. Clinical predictors of radiation-induced lymphopenia in patients receiving chemoradiation for glioblastoma: clinical usefulness of intensity-modulated radiotherapy in the immuno-oncology era[J]. Radiat Oncol, 2019, 14(1): 51.
doi: 10.1186/s13014-019-1256-6 pmid: 30917849 |
[33] |
WANG X, ZHAO Z X, WANG P L, et al. Low lymphocyte count is associated with radiotherapy parameters and affects the outcomes of esophageal squamous cell carcinoma patients[J]. Front Oncol, 2020, 10: 997.
doi: 10.3389/fonc.2020.00997 pmid: 32656085 |
[34] |
JIN J Y, HU C, XIAO Y, et al. Higher radiation dose to the immune cells correlates with worse tumor control and overall survival in patients with stage Ⅲ NSCLC: a secondary analysis of RTOG0617[J]. Cancers (Basel), 2021, 13(24): 6193.
doi: 10.3390/cancers13246193 |
[35] |
VENKATESULU B, GIRIDHAR P, PUJARI L, et al. Lymphocyte sparing normal tissue effects in the clinic (LymphoTEC): a systematic review of dose constraint considerations to mitigate radiation-related lymphopenia in the era of immunotherapy[J]. Radiother Oncol, 2022, 177: 81-94.
doi: 10.1016/j.radonc.2022.10.019 pmid: 36334694 |
[36] |
WANG Y F, DENG W Y, LI N, et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions[J]. Front Pharmacol, 2018, 9: 185.
doi: 10.3389/fphar.2018.00185 pmid: 29556198 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd