| [1] |
REMSIK J, BOIRE A. The path to leptomeningeal metastasis[J]. Nat Rev Cancer, 2024, 24(7): 448-460.
doi: 10.1038/s41568-024-00700-y
pmid: 38871881
|
| [2] |
PAN Z Y, YANG G Z, CUI J W, et al. A pilot phase 1 study of intrathecal pemetrexed for refractory leptomeningeal metastases from non-small-cell lung cancer[J]. Front Oncol, 2019, 9: 838.
doi: 10.3389/fonc.2019.00838
pmid: 31544065
|
| [3] |
MEYER M L, FITZGERALD B G, PAZ-ARES L, et al. New promises and challenges in the treatment of advanced non-small-cell lung cancer[J]. Lancet, 2024, 404(10454): 803-822.
doi: 10.1016/S0140-6736(24)01029-8
|
| [4] |
PATEL K K, HASSAN D, NAIR S, et al. Role of immunotherapy in the treatment of triple-negative breast cancer: a literature review[J]. Cureus, 2022, 14(11): e31729.
|
| [5] |
DHANYAMRAJU P K, PATEL T N. Melanoma therapeutics: a literature review[J]. J Biomed Res, 2022, 36(2): 77-97.
doi: 10.7555/JBR.36.20210163
pmid: 35260531
|
| [6] |
NAIDOO J, SCHRECK K C, FU W, et al. Pembrolizumab for patients with leptomeningeal metastasis from solid tumors: efficacy, safety, and cerebrospinal fluid biomarkers[J]. J Immunother Cancer, 2021, 9(8): e002473.
doi: 10.1136/jitc-2021-002473
|
| [7] |
BRASTIANOS P K, LEE E Q, COHEN J V, et al. Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis[J]. Nat Med, 2020, 26(8): 1280-1284.
doi: 10.1038/s41591-020-0918-0
pmid: 32483359
|
| [8] |
BRASTIANOS P K, STRICKLAND M R, LEE E Q, et al. Phase Ⅱ study of ipilimumab and nivolumab in leptomeningeal carcinomatosis[J]. Nat Commun, 2021, 12: 5954.
doi: 10.1038/s41467-021-25859-y
|
| [9] |
PLUIM D, ROS W, VAN BUSSEL M T J, et al. Enzyme linked immunosorbent assay for the quantification of nivolumab and pembrolizumab in human serum and cerebrospinal fluid[J]. J Pharm Biomed Anal, 2019, 164: 128-134.
doi: S0731-7085(18)30375-3
pmid: 30368118
|
| [10] |
GLITZA OLIVA I C, FERGUSON S D, BASSETT R JR, et al. Concurrent intrathecal and intravenous nivolumab in leptomeningeal disease: phase 1 trial interim results[J]. Nat Med, 2023, 29(4): 898-905.
doi: 10.1038/s41591-022-02170-x
pmid: 36997799
|
| [11] |
PAN Z, YANG G, WANG Z, et al. OS09.6.A a multicenter, phase Ⅰ/Ⅱ, open-label study of intrathecal pemetrexed for leptomeningeal metastases from solid tumor (PMLM, NCT05289908)[J]. J Neuro-Oncol, 2023, 25(suppl_2): ii21-ii22.
|
| [12] |
PAN Z Y, YANG G Z, HE H, et al. Intrathecal pemetrexed combined with involved-field radiotherapy as a first-line intra-CSF therapy for leptomeningeal metastases from solid tumors: a phase Ⅰ/Ⅱ study[J]. Ther Adv Med Oncol, 2020, 12: 1758835920937953.
|
| [13] |
潘振宇, 宋媛媛, 姜同超, 等. 培美曲塞鞘内化疗治疗实体肿瘤脑膜转移的临床研究[J]. 中华肿瘤杂志, 2022, 44(1) : 112-119.
|
|
PAN Z Y, SONG Y Y, JIANG T C, et al. Clinical trials on intrathecal pemetrexed treated leptomeningeal metastases from solid tumors[J]. Chin J Oncol, 2022, 44(1): 112-119.
|
| [14] |
潘振宇, 李思佳, 王卓, 等. 培美曲塞鞘内化疗治疗实体瘤脑膜转移Ⅰ期研究[J] 中华转移性肿瘤杂志, 2024, 7(5): 456-462.
|
|
PAN Z Y, LI S J, WANG Z, et al. A phase Ⅰ dose-escalation study of pemetrexed intrathecal chemotherapy for leptomeningeal metastasis of solid tumors[J]. Chin J Metast Cancer, 2024, 7(5): 456-462.
|
| [15] |
YANG J C H, KIM S W, KIM D W, et al. Osimertinib in patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer and leptomeningeal metastases: the BLOOM study[J]. J Clin Oncol, 2020, 38(6): 538-547.
doi: 10.1200/JCO.19.00457
pmid: 31809241
|
| [16] |
PARK S, BALDRY R, JUNG H A, et al. Phase Ⅱ efficacy and safety of 80 mg osimertinib in patients with leptomeningeal metastases associated with epidermal growth factor receptor mutation-positive non-small cell lung cancer (BLOSSOM)[J]. J Clin Oncol, 2024, 42(23): 2747-2756.
doi: 10.1200/JCO.24.00708
|
| [17] |
XU Z Y, HAO X Z, WANG Q, et al. Intracranial efficacy and safety of furmonertinib 160 mg with or without anti-angiogenic agent in advanced NSCLC patients with BM/LM as salvage therapy[J]. BMC Cancer, 2023, 23(1): 206.
doi: 10.1186/s12885-023-10676-x
|
| [18] |
AHN M J, KIM D W, CHO B C, et al. Activity and safety of AZD3759 in EGFR-mutant non-small-cell lung cancer with CNS metastases (BLOOM): a phase 1, open-label, dose-escalation and dose-expansion study[J]. Lancet Respir Med, 2017, 5(11): 891-902.
doi: 10.1016/S2213-2600(17)30378-8
|
| [19] |
RODRÍGUEZ-RUIZ M E, VANPOUILLE-BOX C, MELERO I, et al. Immunological mechanisms responsible for radiation-induced abscopal effect[J]. Trends Immunol, 2018, 39(8): 644-655.
doi: 10.1016/j.it.2018.06.001
|
| [20] |
DEMARIA S, NG B, DEVITT M L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated[J]. Int J Radiat Oncol Biol Phys, 2004, 58(3): 862-870.
doi: 10.1016/j.ijrobp.2003.09.012
|
| [21] |
LIU J, WEST H, MCGEE H M, et al. Challenges in synergizing radiotherapy with immunotherapy to unlock the abscopal effect in metastatic NSCLC: a systematic review[J]. Neoplasia, 2023, 43: 100914.
doi: 10.1016/j.neo.2023.100914
|
| [22] |
PEVZNER A M, TSYGANOV M M, IBRAGIMOVA M K, et al. Abscopal effect in the radio and immunotherapy[J]. Radiat Oncol J, 2021, 39(4): 247-253.
doi: 10.3857/roj.2021.00115
pmid: 34986545
|