中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (1): 85-142.doi: 10.19401/j.cnki.1007-3639.2025.01.010
• 指南与共识 • 上一篇
中国抗癌协会神经内分泌肿瘤专业委员会
收稿日期:
2024-10-30
修回日期:
2024-12-12
出版日期:
2025-01-30
发布日期:
2025-02-17
Society of Neuroendocrine Neoplasm of China Anti-Cancer Association
Received:
2024-10-30
Revised:
2024-12-12
Published:
2025-01-30
Online:
2025-02-17
文章分享
摘要:
神经内分泌肿瘤(neuroendocrine neoplasms,NENs)是一类起源于肽能神经元和神经内分泌细胞,具有神经内分泌分化特性并表达神经内分泌标志物的少见肿瘤,可发生于全身各处,以肺和胃肠胰最为常见。国内外研究均显示,NENs的发病率在不断上升。NENs的异质性较高,可起源于多个组织和器官,包括垂体、甲状腺、甲状旁腺、皮肤、支气管肺及胸腺、胃肠胰、肾上腺、生殖泌尿器官等,且同一组织或器官起源的NENs分类、分级不同时,亦有显著不同的生物学行为。NENs的高度异质性决定其诊断的困难和复杂性,除了临床症状,还需包括特殊的生物标志物、内镜、超声、计算机体层成像(computed tomography,CT)、磁共振成像(magnetic resonance imaging,MRI)等常规影像学检查以及各种功能影像学检查手段进行整合诊断。此外,NENs的治疗方式也涵盖了内镜治疗、外科治疗、介入治疗、药物治疗、放疗及肽受体放射性核素治疗(peptide receptor radionuclide therapy,PRRT)等多种手段。治疗策略的制定既要遵循指南规范,又要在多学科团队(multidisciplinary team,MDT)协作整合诊治的基础上进行个体化选择。2024年,中国抗癌协会神经内分泌肿瘤专业委员会再次组织本领域相关专家,在《中国抗癌协会神经内分泌肿瘤诊治指南(2022年版)》、其他相关国内外指南和共识、以及最新临床研究结果的基础上,制定了《中国抗癌协会神经内分泌肿瘤诊治指南(2025年版)》。本指南已在国际实践指南注册与透明化平台(Practice guideline REgistration for transPAREncy,PREPARE)上注册,注册编号为PREPARE-2024CN1158。2025年版指南对2022年版指南相应内容进行更新及修订,并进一步扩充了除胸部和胃肠胰以外的NENs,包括垂体神经内分泌瘤(pituitary neuroendocrine tumors,PitNETs)、甲状腺髓样癌(medullary thyroid carcinoma,MTC)、嗜铬细胞瘤/副神经节瘤(pheochromocytoma and paragangliomas,PPGLs)及Merkel细胞癌(Merkel cell carcinoma,MCC)的诊治推荐,以期为临床工作者提供参考。
中图分类号:
中国抗癌协会神经内分泌肿瘤专业委员会. 中国抗癌协会神经内分泌肿瘤诊治指南(2025年版)[J]. 中国癌症杂志, 2025, 35(1): 85-142.
Society of Neuroendocrine Neoplasm of China Anti-Cancer Association. China Anti-Cancer Association guideline for diagnosis and treatment of neuroendocrine neoplasms (2025 edition)[J]. China Oncology, 2025, 35(1): 85-142.
表1
F-NENs的临床分类和特征"
类型 | 发病率(n/100万人年) | 分泌激素 | 常见部位 | 转移比例 | 主要症状 |
---|---|---|---|---|---|
胰岛素瘤 | 1~4 | 胰岛素 | 胰腺 | 5%~10% | 发作性低血糖症候群 |
胃泌素瘤 | 0.5~3 | 胃泌素 | 十二指肠、胰腺 | <50% | 卓-艾综合征 |
VIP瘤 | 0.05~0.20 | VIP | 胰腺 | 40%~80% | 水样泻、低钾血症、胃酸缺乏、酸中毒 |
胰高血糖素瘤 | 0.01~0.10 | 胰高血糖素 | 胰腺 | 50%~80% | 坏死游走性红斑、贫血、葡萄糖不耐受、体重下降 |
生长抑素瘤 | 罕见 | 生长抑素 | 胰腺、十二指肠、空肠 | 50%~60% | 糖尿病、胆石症、腹泻、胃酸缺乏、低血糖 |
产生ACTH的NET | 少见 | ACTH | 胰腺、胸腺 垂体 | >90% | 库欣综合征 |
产生5-羟色胺的NET | 少见 | 5-羟色胺 | 小肠、肺、胰腺 | >60% | 类癌综合征 |
产生甲状旁腺激素相关肽的NET | 罕见 | 甲状旁腺激素相关肽 | 胰腺 | >90% | 高钙低磷血症 |
Ctn瘤 | 罕见 | Ctn | 胰腺 | >90% | 腹泻、潮红 |
产生生长激素释放激素的NET | 罕见 | 生长激素释放激素 | 胰腺、肺 | >60% | 异位肢端肥大症 |
嗜铬细胞瘤 | 0.2~0.8 | 儿茶酚胺激素 | 肾上腺 | 15%~20% | 高血压、心悸、头痛、出汗 |
生长激素瘤 | 0.2~1.1 | 生长激素 | 垂体 | 0.2% | 肢端肥大症 |
泌乳素瘤 | 2.1~5.4 | 泌乳素 | 垂体 | 0.2% | 闭经、异常泌乳、男性性功能障碍 |
促甲状腺素瘤 | 0.03~0.04 | 促甲状腺激素 | 垂体 | 0.2% | 甲亢 |
表2
NENs相关的常见遗传综合征"
遗传综合征 | 遗传方式 | 基因 | 主要临床表现 |
---|---|---|---|
MEN1 | 常染色体显性遗传 | MEN1 | 甲状旁腺腺瘤/增生、PitNETs、肺NET、胸腺NET、十二指肠NET、pNET、肾上腺皮质腺瘤 |
MEN2A | 常染色体显性遗传 | RET | MTC、嗜铬细胞瘤、甲状旁腺腺瘤/增生、CLA、HD |
FMTC | 常染色体显性遗传 | RET | MTC |
MEN2B | 常染色体显性遗传 | RET | MTC、嗜铬细胞瘤、特殊面容、马方综合征样体型、舌黏膜神经瘤、肠道神经节瘤等 |
MEN4 | 常染色体显性遗传 | CDKN1A、CDKN1B、CDKN1C | 甲状旁腺腺瘤/增生、PitNETs、pNET或十二指肠NET、肾上腺皮质腺瘤 |
MEN5 | 常染色体显性遗传 | MAX | PPGLs、PitNETs、pNET等 |
VHL | 常染色体显性遗传 | VHL | PPGLs、pNET、胰腺多发囊肿、肾透明细胞癌、中枢/视网膜血管母细胞瘤 |
NF1 | 常染色体显性遗传 | NF1 | 皮肤多发牛奶咖啡斑、皮肤多发神经纤维瘤、虹膜Lisch结节、胶质瘤、嗜铬细胞瘤、pNET |
TSC | 常染色体显性遗传 | TSC1或TSC2 | 低黑色素斑疹、鲨鱼皮斑、肾血管平滑肌脂肪瘤、多发性和弥漫性错构瘤、精神发育迟滞、pNET |
遗传性PPGLs综合征 | 常染色体显性遗传/ 父系遗传 | MAX、SDHA、SDHAF2、SDHB、SDHC、SDHD、TMEM127 | 多发或早发PPGLs |
MAFA相关性胰岛素瘤 | 常染色体显性遗传 | MAFA p.Ser64Phe | 家族性胰岛素瘤病或糖尿病 |
表3
不同解剖部位上皮型NENs的分类标准"
部位 | 类型 | 分级/亚型 | 诊断标准 |
---|---|---|---|
胃肠胰和肝胆 | NET | G1 | <2个核分裂象/2 mm2和(或)Ki-67增殖指数<3% |
G2 | 2~20个核分裂象/2 mm2和(或)Ki-67增殖指数为3%~20% | ||
G3 | >20个核分裂象/2 mm2和(或)Ki-67增殖指数>20% | ||
NEC | SCNEC | >20个核分裂象/2 mm2和(或)Ki-67增殖指数>20%(常>70%,具有SCNEC的形态特征) | |
LCNEC | >20个核分裂象/2 mm2和(或)Ki-67增殖指数>20%(常>70%,具有LCNEC的形态特征) | ||
上呼吸消化道和唾液腺 | NET | G1 | <2个核分裂象/2 mm2和没有坏死,以及Ki-67增殖指数<20% |
G2 | 2~10个核分裂象/2 mm2和(或)坏死,以及Ki-67增殖指数<20% | ||
G3 | >10个核分裂象/2 mm2和(或)Ki-67增殖指数>20% | ||
NEC | SCNEC | >10个核分裂象/2 mm2和(或)Ki-67增殖指数>20%(常>70%,具有SCNEC的形态特征) | |
LCNEC | >10个核分裂象/2 mm2和(或)Ki-67增殖指数>20%(常>55%,具有LCNEC的形态特征) | ||
肺和胸腺 | NET | TC/NET,G1 | <2个核分裂象/2 mm2和没有坏死 |
AC/NET,G2 | 2~10个核分裂象/2 mm2和(或)坏死(通常是点状坏死) | ||
伴核分裂象和(或)Ki-67增殖指数增高的类癌(相当于NET,G3) | 具有AC形态,但>10个核分裂象/2 mm2和(或)Ki-67增殖指数>30% | ||
NEC | SCNEC | >10个核分裂象/2 mm2,常伴坏死和SCNEC的形态 | |
LCNEC | >10个核分裂象/2 mm2,几乎总伴坏死和具有LCNEC的形态 | ||
甲状腺 | MTC | 低级别MTC | <5个核分裂象/2 mm2和没有坏死,以及Ki-67增殖指数<5% |
高级别MTC | 下列3个指标中至少有1个:① ≥5个核分裂象/2 mm2;② 出现坏死;③ Ki-67增殖指数≥5% |
表6
F-NENs特异性激素及相应效应指标检测汇总"
类型 | 分泌激素 | 检测项目 |
---|---|---|
胰岛素瘤 | 胰岛素 | 饥饿试验或低血糖发作时血糖↓、血清胰岛素↑、C肽↑ |
胃泌素瘤 | 胃泌素 | 血清胃泌素↑ |
VIP瘤 | VIP | 血清VIP↑、血钾↓、血钙↑、CO2结合力↓ |
胰高血糖素瘤 | 胰高血糖素 | 血浆胰高血糖素↑、血常规(正细胞正色素贫血)及凝血常规(血液高凝)、口服葡萄糖耐量试验(糖耐量异常或达到糖尿病诊断标准)、糖化血红蛋白↑、血清胰岛素及C肽↑ |
生长抑素瘤 | 生长抑素 | 血浆生长抑素↑、血糖↑或↓ |
产生ACTH的NET | ACTH | 血清ACTH↑、24 h尿皮质醇↑、小剂量和大剂量地塞米松抑制试验不能被抑制、血钾↓、血糖↑、糖化血红蛋白↑ |
产生5-羟色胺的NET | 5-羟色胺 | 24 h尿5-羟基吲哚乙酸↑、NT-proBNP↑ |
产生甲状旁腺激素相关肽的NET | 甲状旁腺激素相关肽 | 血浆甲状旁腺激素相关肽↑、血浆甲状旁腺素↓、血钙↑、血磷↓ |
Ctn瘤 | Ctn | 血清Ctn↑、血钙↓、甲状旁腺素↑ |
产生生长激素释放激素的NET或生长激素瘤 | 生长激素释放激素或生长激素 | 血浆生长激素释放激素/血清生长激素↑、口服葡萄糖耐量试验生长激素不被抑制、血清IGF-1↑、血糖↑、糖化血红蛋白↑ |
嗜铬细胞瘤 | 儿茶酚胺类激素 | 24 h尿甲氧基去甲肾上腺素及去甲变肾上腺素↑、儿茶酚胺或甲氧酪胺↑ |
泌乳素瘤 | 泌乳素 | 血清泌乳素↑ |
促甲状腺素瘤 | 促甲状腺激素 | 促甲状腺激素正常或↑、游离T4↑ |
表7
2019年WHO g-NET分型及其临床病理学特征"
特征 | 1型ECL-NET | 2型ECL-NET | 3型NET |
---|---|---|---|
男∶女 | 0.4∶1.0 | 1.0∶1.0 | 2.8∶1.0 |
所占比例 | 80%~90% | 5%~7% | 10%~15% |
高胃泌素血症 | 是 | 是 | 否 |
胃窦G细胞增生 | 是 | 否 | 否 |
胃酸分泌 | 低胃酸/胃酸缺乏 | 高胃酸 | 正常 |
背景黏膜 | 萎缩性胃炎 | 壁细胞肥大/增生 | 无特异改变 |
ECL增殖 | 是 | 是 | 否 |
病理学分级 | G1 | G1 | G1(罕见) |
G2(罕见) | G2(罕见) | G2 | |
G3(个别) | G3(罕见) | ||
转移率 | 1%~3% | 10%~30% | 50% |
5年生存率 | 90%~100% | 60%~90% | <50% |
表8
第9版AJCC GEP-NET TNM定义"
分期 | TNM定义 |
---|---|
Tx | 原发肿瘤无法评估 |
T1 | 侵犯黏膜固有层或黏膜下层,且肿瘤直径≤1 cm(胃、十二指肠、空回肠); 局限于Oddi氏括约肌,且肿瘤直径≤1 cm(壶腹部); 肿瘤最大径≤2 cm(阑尾); 侵犯黏膜固有层或黏膜下层,且肿瘤直径≤2 cm(结直肠):肿瘤直径≤1 cm为T1a期,1 cm<肿瘤直径≤2 cm为T1b期; 局限于胰腺内,且肿瘤直径≤2 cm(胰腺) |
T2 | 侵犯固有肌层,或肿瘤直径>1 cm(胃、十二指肠、空回肠); 侵犯十二指肠固有肌层或黏膜下层,或肿瘤直径>1 cm(壶腹部); 2 cm<肿瘤直径≤4 cm(阑尾); 侵犯固有肌层,或侵犯黏膜固有层或黏膜下层,且肿瘤直径>2 cm(结直肠); 局限于胰腺内,且2 cm<肿瘤直径≤4 cm(胰腺) |
T3 | 穿透固有肌层至浆膜下层,未突破浆膜层(胃、空回肠、结直肠); 侵犯胰腺或胰周脂肪组织(十二指肠、壶腹部); 肿瘤直径>4 cm,或侵犯浆膜下层,或侵犯阑尾系膜(阑尾); 局限于胰腺内,且肿瘤直径>4 cm;或侵犯十二指肠、壶腹部或胆管(胰腺) |
T4 | 侵犯脏腹膜或其他器官或邻近组织(胃、十二指肠、壶腹部、空回肠、结直肠、阑尾); 侵犯邻近器官,如胃、脾、结肠、肾上腺,或大血管壁,如腹腔干、肠系膜上动脉/静脉、脾动脉/静脉、胃十二指肠动脉/静脉、门静脉(胰腺) |
Nx | 区域淋巴结无法评估 |
N0 | 无区域淋巴结转移(所有部位) |
N1 | 区域淋巴结转移,数量不限(除空回肠外其他部位); 区域淋巴结转移数量<12颗(空回肠) |
N2 | 直径>2 cm的肠系膜根部肿物和(或)广泛淋巴结转移(大于12枚),尤其是包绕肠系膜上血管的淋巴结(仅针对空回肠) |
M0 | 无远处转移(所有部位) |
M1 | 有远处转移(所有部位) |
M1a | 转移局限于肝脏 |
M1b | 转移到至少1个肝外部位(如肺、卵巢、非区域淋巴结、腹膜、骨) |
M1c | 肝脏和肝外转移瘤 |
表10
第9版AJCC肺NENs TNM定义"
分期 | TNM定义 |
---|---|
Tx | 原发肿瘤无法评估,或痰液或支气管灌洗液中存在恶性细胞,但支气管镜未观察到原发肿瘤 |
T0 | 没有原发肿瘤的证据 |
Tis | 原位癌 |
T1 | 肿瘤最大径≤3 cm,周围被肺或脏层胸膜包绕,支气管镜未发现肿瘤侵犯超过叶支气管近端(即主支气管未见肿瘤侵犯) |
T1a | 肿瘤最大径≤1 cm |
T1b | 肿瘤最大径>1 cm,≤2 cm |
T1c | 肿瘤最大径>2 cm,≤3 cm |
T2 | 3 cm<肿瘤最大直径≤5 cm或有以下任一特征: ① 累及主支气管,无论距离气管隆突多远,但不包括气管隆突; ② 侵犯脏层胸膜(PL1或PL2); ③ 合并肺不张或阻塞性肺炎,延伸至肺门,累及部分或全肺 |
T2a | 3 cm<肿瘤最大径≤4 cm |
T2b | 4 cm<肿瘤最大径≤5 cm |
T3 | 5 cm<肿瘤最大径≤7 cm,或直接侵犯以下部位:壁层胸膜(PL3)、胸壁(包括肺上沟)、膈神经、心包壁层、或与原发灶同一叶内出现单个或多个分散的瘤结节 |
T4 | 肿瘤>7 cm,或任何大小的肿瘤侵犯下列任一结构:横膈膜、纵隔、心脏、大血管、气管、喉返神经、食管、椎体、气管隆突或与原发灶同侧但不同肺叶出现单个或多个分散的瘤结节 |
Nx | 区域淋巴结无法评估 |
N0 | 无区域淋巴结转移 |
N1 | 转移至同侧支气管周围和(或)同侧肺门淋巴结,包括直接侵犯 |
N2 | 转移至同侧纵隔和(或)锁骨下淋巴结 |
N2a | 转移至1站同侧纵隔和(或)锁骨下淋巴结 |
N2b | 转移至同侧纵隔多站淋巴结,包括/不包括锁骨下淋巴结侵犯 |
N3 | 转移至对侧纵隔、对侧肺门、同侧或对侧斜角肌或锁骨上淋巴结 |
M0 | 无远处转移 |
M1 | 有远处转移 |
M1a | 对侧肺叶出现散在的肿瘤结节;出现胸膜结节、心包结节、恶性胸腔或心包积液。大部分胸腔(心包)积液是肿瘤引起的。但在少数患者中,胸腔(心包)积液多次显微镜检查,肿瘤细胞均是阴性,且积液是非血性、非渗出液。综合考虑这些因素和临床判断确定积液与肿瘤无关时,积液应不作为分期参考因素 |
M1b | 单个器官内单一胸外转移(包括单个非区域性结节的累及) |
M1c | 单个器官或多个器官发生多个胸外转移 |
M1c1 | 单个器官发生多个胸外转移 |
M1c2 | 多个器官发生多个胸外转移 |
表11
第9版AJCC肺NENs TNM分期"
分期 | T | N | M | 分期 | T | N | M | |
---|---|---|---|---|---|---|---|---|
隐匿性癌 | Tx | N0 | M0 | ⅢB | T2a | N2b | M0 | |
0 | Tis | N0 | M0 | ⅢB | T2a | N3 | M0 | |
ⅠA1 | T1a | N0 | M0 | ⅡA | T2b | N0 | M0 | |
ⅡA | T1a | N1 | M0 | ⅡB | T2b | N1 | M0 | |
ⅡB | T1a | N2a | M0 | ⅢA | T2b | N2a | M0 | |
ⅢA | T1a | N2b | M0 | ⅢB | T2b | N2b | M0 | |
ⅢB | T1a | N3 | M0 | ⅢB | T2b | N3 | M0 | |
ⅠA2 | T1b | N0 | M0 | ⅡB | T3 | N0 | M0 | |
ⅡA | T1b | N1 | M0 | ⅢA | T3 | N1 | M0 | |
ⅡB | T1b | N2a | M0 | ⅢA | T3 | N2a | M0 | |
ⅢA | T1b | N2b | M0 | ⅢB | T3 | N2b | M0 | |
ⅢB | T1b | N3 | M0 | ⅢC | T3 | N3 | M0 | |
ⅠA3 | T1c | N0 | M0 | ⅢA | T4 | N0 | M0 | |
ⅡA | T1c | N1 | M0 | ⅢA | T4 | N1 | M0 | |
ⅡB | T1c | N2a | M0 | ⅢB | T4 | N2a | M0 | |
ⅢA | T1c | N2b | M0 | ⅢB | T4 | N2b | M0 | |
ⅢB | T1c | N3 | M0 | ⅢC | T4 | N3 | M0 | |
ⅠB | T2a | N0 | M0 | ⅣA | 任何T | 任何N | M1a | |
ⅡB | T2a | N1 | M0 | ⅣA | 任何T | 任何N | M1b | |
ⅢA | T2a | N2a | M0 | ⅣB | 任何T | 任何N | M1c1、M1c2 |
表12
第9版AJCC胸腺NENs TNM定义"
分期 | TNM定义 | 分期 | TNM定义 | |
---|---|---|---|---|
Tx | 原发肿瘤无法评估 | Nx | 区域淋巴结无法评估 | |
T0 | 没有原发肿瘤的证据 | N0 | 无区域淋巴结转移 | |
T1 | 局限于胸腺和胸腺周围脂肪,可侵犯纵隔胸膜,但不侵犯其他任何纵隔内结构 | N1 | 前纵隔(胸腺周围)淋巴结转移 | |
T1a | 肿瘤直径≤5 cm | N2 | 胸部深部或颈部淋巴结转移 | |
T1b | 肿瘤直径>5 cm | M0 | 无胸膜、心包或远处转移 | |
T2 | 肿瘤直接侵犯心包(部分或全层)、肺、膈神经 | M1 | 胸膜、心包或远处转移 | |
T3 | 肿瘤直接侵犯以下任何部位:头臂静脉、上腔静脉、胸壁、心包外肺动脉或静脉 | M1a | 胸膜或心包转移 | |
T4 | 肿瘤直接侵犯以下任何部位:主动脉(升主动脉、主动脉弓或降主动脉)、弓血管、心包内肺动脉、心肌、气管、食管 | M1b | 肺实质或远处器官转移 |
表14
常见RET基因突变位点与MEN2A和MEN2B侵袭性MTC的相关性及与相关伴随疾病发生的相关性"
RET突变位点 | 外显子 | MTC风险度 | 伴嗜铬细胞瘤/% | 伴HPTH/% | CLA | HD |
---|---|---|---|---|---|---|
G533C | 8 | 中危 | 10 | - | 无 | 无 |
C609F/G/R/S/Y | 10 | 中危 | 10~30 | 10 | 无 | 有 |
C611F/G/S/Y/W | 10 | 中危 | 10~30 | 10 | 无 | 有 |
C618F/R/S | 10 | 中危 | 10~30 | 10 | 无 | 有 |
C620F/R/S | 10 | 中危 | 10~30 | 10 | 无 | 有 |
C630R/Y | 11 | 中危 | 10~30 | 10 | 无 | 无 |
D631Y | 11 | 中危 | 50 | - | 无 | 无 |
C634F/G/R/S/W/Y | 11 | 高危 | 50 | 20~30 | 有 | 无 |
K666E | 11 | 中危 | 10 | - | 无 | 无 |
E768D | 13 | 中危 | - | - | 无 | 无 |
L790F | 13 | 中危 | 10 | - | 无 | 无 |
V804L | 14 | 中危 | 10 | 10 | 无 | 无 |
V804M | 14 | 中危 | 10 | 10 | 有 | 无 |
A883F | 15 | 高危 | 50 | - | 无 | 无 |
S891A | 15 | 中危 | 10 | 10 | 无 | 无 |
R912P | 16 | 中危 | - | - | 无 | 无 |
M918T | 16 | 极高危 | 50 | - | 无 | 无 |
表15
用于NET的常用TKIs的主要靶点、临床研究结果及应用推荐"
药物名 | 主要靶点 | 研究结果 | 临床使用推荐 |
---|---|---|---|
舒尼替尼 | VEGFR1-3 PDGFR、c-KIT、RET、FLT3、CSF-1R | ⑴ pNET Ⅲ期临床试验[ ⑵ MTC Ⅱ期临床试验(THYSU)[ ⑶ PPGLs Ⅱ期临床试验(FIRSTMAPPP)[ | ⑴ 进展期G1/G2级pNET; ⑵ 局部进展或晚期MTC; ⑶ 晚期;PPGLs |
索凡替尼 | VEGFR1-3、FGFR1、CSF1R | ⑴ pNET Ⅲ期临床试验(SANET-p)[ ⑵ 胰腺以外NET Ⅲ期临床试验(SANET-ep)[ ⑶ MTC Ⅱ期临床试验[ | ⑴ 进展期G1/G2级胃肠胰、胸部、不明原发灶NET; ⑵ 局部进展或晚期MTC |
仑伐替尼 | VEGFR1-3、FGFR1-4、PDGFR、RET、c-KIT | ⑴ GEP-NET Ⅱ期临床试验(TALENT)[ ⑵ MTC Ⅱ期临床试验[ | 局部进展或晚期MTC |
Cabozantinib | VEGFR1-3、KIT、TRKB、FLT-3、AXL、RET、MET、TIE-2 | ⑴ NET Ⅲ期临床试验(CABINET)[ ⑵ MTC Ⅲ期临床试验[ | ⑴ 进展期G1/G2级胃肠胰、胸部、不明原发灶NET*; ⑵ 局部进展或晚期MTC* |
Vandetanib | RET、VEGFR、EGFR | MTC Ⅲ期临床试验[ | 局部进展或晚期MTC* |
安罗替尼 | VEGFR2-3、FGFR1-4、PDGFR、RET、c-KIT | MTC Ⅱ期临床试验[ | 局部进展或晚期MTC |
表16
NENs常用化疗方案及其用法用量"
方案 | 药物 | 具体用法用量 |
---|---|---|
CAPTEM | 卡培他滨、TMZ | 卡培他滨:750 mg/m2,口服,每天2次,第1~14天;TMZ:200 mg/m2,口服,每天1次,第10~14天;每28 d |
FOLFOX | 奥沙利铂、亚叶酸钙、5-FU | 奥沙利铂85 mg/m2,静脉滴注,第1天;亚叶酸钙:400 mg/m2,静脉滴注,第1天;5-FU:400 mg/m2,静脉注射,第1天;5-FU 2 400 mg/m2,持续静脉输注持续46 h;每14 d |
XELOX | 奥沙利铂、卡培他滨 | 奥沙利铂130 mg/m2,静脉滴注,第1天;卡培他滨1 000 mg/m2,口服,每天2次,第1~14天;每21 d |
S-1/TMZ | 替吉奥、TMZ | 替吉奥:40~60 mg,口服,每天2次,第1~14天;TMZ:200 mg,口服,第10~14天;每21 d |
EP | 依托泊苷、顺铂 | 依托泊苷:100 mg/m2,静脉滴注,第1~3天;顺铂:总量75 mg/m2,分3天静脉滴注,第1~3天;每21 d |
EC | 依托泊苷、卡铂 | 依托泊苷:100 mg/m2,静脉滴注,第1~3天;卡铂:AUC 4~6,静脉滴注,第1天;每21 d |
IP | 伊立替康、顺铂 | 伊立替康:60 mg/m2,静脉滴注,第1、8、15天;顺铂:60 mg/m2,静脉滴注,第1天;每28 d |
FOLFIRI | 伊立替康、亚叶酸钙、5-FU | 伊立替康:180 mg/m2,静脉滴注,第1天;亚叶酸钙:400 mg/m2,静脉滴注,第1天;5-FU:400 mg/m2,静脉注射,第1天;5-FU:2 400 mg/m2,持续静脉输注持续46 h;每14 d |
[1] |
DASARI A, SHEN C, HALPERIN D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States[J]. JAMA Oncol, 2017, 3(10): 1335-1342.
doi: 10.1001/jamaoncol.2017.0589 pmid: 28448665 |
[2] | FANG C, WANG W, ZHANG Y, et al. Clinicopathologic characteristics and prognosis of gastroenteropancreatic neuroendocrine neoplasms: a multicenter study in South China[J]. Chin J Cancer, 2017, 36(1): 51. |
[3] | FAN J H, ZHANG Y Q, SHI S S, et al. A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in China[J]. Oncotarget, 2017, 8(42): 71699-71708. |
[4] |
LAVRENTAKI A, PALUZZI A, WASS J A H, et al. Epidemiology of acromegaly: review of population studies[J]. Pituitary, 2017, 20(1): 4-9.
doi: 10.1007/s11102-016-0754-x pmid: 27743174 |
[5] | MIRANDA-FILHO A, LORTET-TIEULENT J, BRAY F, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study[J]. Lancet Diabetes Endocrinol, 2021, 9(4): 225-234. |
[6] | GARCIA-CARBONERO R, MATUTE TERESA F, MERCADER-CIDONCHA E, et al. Multidisciplinary practice guidelines for the diagnosis, genetic counseling and treatment of pheochromocytomas and paragangliomas[J]. Clin Transl Oncol, 2021, 23(10): 1995-2019. |
[7] |
STANG A, BECKER J C, NGHIEM P, et al. The association between geographic location and incidence of Merkel cell carcinoma in comparison to melanoma: an international assessment[J]. Eur J Cancer, 2018, 94: 47-60.
doi: S0959-8049(18)30163-1 pmid: 29533867 |
[8] |
YOULDEN D R, SOYER H P, YOUL P H, et al. Incidence and survival for Merkel cell carcinoma in Queensland, Australia, 1993-2010[J]. JAMA Dermatol, 2014, 150(8): 864-872.
doi: 10.1001/jamadermatol.2014.124 pmid: 24943712 |
[9] |
MINNETTI M, GROSSMAN A. Somatic and germline mutations in NETs: implications for their diagnosis and management[J]. Best Pract Res Clin Endocrinol Metab, 2016, 30(1): 115-127.
doi: 10.1016/j.beem.2015.09.007 pmid: 26971848 |
[10] | HOFLAND J, FALCONI M, CHRIST E, et al. European Neuroendocrine Tumor Society 2023 guidance paper for functioning pancreatic neuroendocrine tumour syndromes[J]. J Neuroendocrinol, 2023, 35(8): e13318. |
[11] |
RINDI G, METE O, UCCELLA S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms[J]. Endocr Pathol, 2022, 33(1): 115-154.
doi: 10.1007/s12022-022-09708-2 pmid: 35294740 |
[12] | PANZUTO F, RAMAGE J, PRITCHARD D M, et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for gastroduodenal neuroendocrine tumours (NETs) G1-G3[J]. J Neuroendocrinol, 2023, 35(8): e13306. |
[13] |
RAYMOND E, HAMMEL P, DREYER C, et al. Sunitinib in pancreatic neuroendocrine tumors[J]. Target Oncol, 2012, 7(2): 117-125.
doi: 10.1007/s11523-012-0220-2 pmid: 22661319 |
[14] | CAPLIN M E, PAVEL M, ĆWIKŁA J B, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors[J]. N Engl J Med, 2014, 371(3): 224-233. |
[15] | YAO J C, PAVEL M, LOMBARD-BOHAS C, et al. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: overall survival and circulating biomarkers from the randomized, phase Ⅲ RADIANT-3 study[J]. J Clin Oncol, 2016, 34(32): 3906-3913. |
[16] |
XU J M, SHEN L, BAI C M, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(11): 1489-1499.
doi: 10.1016/S1470-2045(20)30493-9 pmid: 32966810 |
[17] |
XU J M, SHEN L, ZHOU Z W, et al. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(11): 1500-1512.
doi: 10.1016/S1470-2045(20)30496-4 pmid: 32966811 |
[18] | SINGH S, HALPERIN D, MYREHAUG S, et al. [177Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2-3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): an open-label, randomised, phase 3 study[J]. Lancet, 2024, 403(10446): 2807-2817. |
[19] | LIU Y M, CHEN W C, CUI W, et al. Quantitative pretreatment CT parameters as predictors of tumor response of neuroendocrine tumor liver metastasis to transcatheter arterial bland embolization[J]. Neuroendocrinology, 2020, 110(7/8): 697-704. |
[20] |
中国抗癌协会神经内分泌肿瘤专业委员会. 中国抗癌协会神经内分泌肿瘤诊治指南(2022年版)[J]. 中国癌症杂志, 2022, 32(6): 545-580.
doi: 10.19401/j.cnki.1007-3639.2022.06.010 |
Society of Neuroendocrine Neoplasm of China Anti-Cancer Association. China Anti-Cancer Association guideline for diagnosis and treatment of neuroendocrine neoplasm (2022 edition)[J]. China Oncol, 2022, 32(6): 545-580. | |
[21] | CINGAM S R, BOTEJUE M, HOILAT G J, et al. Gastrinoma[M]. Treasure Island (FL): StatPearls Publishing, 2023. |
[22] |
FALCONI M, ERIKSSON B, KALTSAS G, et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors[J]. Neuroendocrinology, 2016, 103(2): 153-171.
doi: 10.1159/000443171 pmid: 26742109 |
[23] | WU W M, JIN G, LI H M, et al. The current surgical treatment of pancreatic neuroendocrine neoplasms in China: a national wide cross-sectional study[J]. J Pancreatol, 2019, 2(2): 35-42. |
[24] | GARCÍA-YUSTE M, MATILLA J M, CUETO A, et al. Typical and atypical carcinoid tumours: analysis of the experience of the Spanish multi-centric study of neuroendocrine tumours of the lung[J]. Eur J Cardiothorac Surg, 2007, 31(2): 192-197. |
[25] |
BAUDIN E, CAPLIN M, GARCIA-CARBONERO R, et al. Lung and thymic carcinoids: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2021, 32(4): 439-451.
doi: 10.1016/j.annonc.2021.01.003 pmid: 33482246 |
[26] |
HALPERIN D M, SHEN C, DASARI A, et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study[J]. Lancet Oncol, 2017, 18(4): 525-534.
doi: S1470-2045(17)30110-9 pmid: 28238592 |
[27] |
BAUDIN E, HAYES A, SCOAZEC J Y, et al. Unmet medical needs in pulmonary neuroendocrine (carcinoid) neoplasms[J]. Neuroendocrinology, 2019, 108(1): 7-17.
doi: 10.1159/000493980 pmid: 30248673 |
[28] |
FILOSSO P L, YAO X P, AHMAD U, et al. Outcome of primary neuroendocrine tumors of the thymus: a joint analysis of the International Thymic Malignancy Interest Group and the European Society of Thoracic Surgeons databases[J]. J Thorac Cardiovasc Surg, 2015, 149(1): 103-109.e2.
doi: 10.1016/j.jtcvs.2014.08.061 pmid: 25308116 |
[29] | 中国垂体腺瘤协作组, 中华医学会神经外科学分会. 中国复发性垂体腺瘤诊治专家共识(2019)[J]. 中华医学杂志, 2019, 99(19): 1449-1453. |
Chinese Pituitary Adenoma Collaborative Group, Neurosurgery Branch of the Chinese Medical Association. Expert consensus on the diagnosis and treatment of recurrent pituitary adenomas in China (2019)[J]. Natl Med J China, 2019, 99(19): 1449-1453. | |
[30] | 中国垂体腺瘤协作组. 中国垂体腺瘤外科治疗专家共识[J]. 中华医学杂志, 2015, 95(5): 324-329. |
Chinese Pituitary Adenoma Collaborative Group. Expert consensus on surgical treatment of pituitary adenoma in China[J]. Natl Med J China, 2015, 95(5): 324-329. | |
[31] | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: thyroid carcinoma, V.4.2024[EB/OL]. [2024-11-15]. https://www.nccn.org/guidelines/category_1. |
[32] | GOUDET P, CADIOT G, BARLIER A, et al. French guidelines from the GTE, AFCE and ENDOCAN-RENATEN (Groupe d'étude des Tumeurs Endocrines/Association Francophone de Chirurgie Endocrinienne/Reseau National de Prise en Charge des Tumeurs Endocrines) for the screening, diagnosis and management of multiple endocrine neoplasia type 1[J]. Ann Endocrinol, 2024, 85(1): 2-19. |
[33] |
WELLS S A Jr, ASA S L, DRALLE H, et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma[J]. Thyroid, 2015, 25(6): 567-610.
doi: 10.1089/thy.2014.0335 pmid: 25810047 |
[34] | LUGOWSKA I, BECKER J C, ASCIERTO P A, et al. Merkel-cell carcinoma: ESMO-EURACAN Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. ESMO Open, 2024, 9(5): 102977. |
[35] | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: merkel cell carcinoma, V.1.2024[EB/OL]. [2024-11-15]. https://www.nccn.org/guidelines/category_1. |
[36] |
NOSÉ V, GILL A, TEIJEIRO J M C, et al. Overview of the 2022 WHO classification of familial endocrine tumor syndromes[J]. Endocr Pathol, 2022, 33(1): 197-227.
doi: 10.1007/s12022-022-09705-5 pmid: 35285003 |
[37] |
TANG L H, BASTURK O, SUE J J, et al. A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas[J]. Am J Surg Pathol, 2016, 40(9): 1192-1202.
doi: 10.1097/PAS.0000000000000662 pmid: 27259015 |
[38] |
BELLIZZI A M. Immunohistochemistry in the diagnosis and classification of neuroendocrine neoplasms: what can brown do for you?[J]. Hum Pathol, 2020, 96: 8-33.
doi: S0046-8177(19)30229-1 pmid: 31857137 |
[39] |
METE O, ASA S L, GILL A J, et al. Overview of the 2022 WHO classification of paragangliomas and pheochromocytomas[J]. Endocr Pathol, 2022, 33(1): 90-114.
doi: 10.1007/s12022-022-09704-6 pmid: 35285002 |
[40] |
ASA S L, METE O, PERRY A, et al. Overview of the 2022 WHO classification of pituitary tumors[J]. Endocr Pathol, 2022, 33(1): 6-26.
doi: 10.1007/s12022-022-09703-7 pmid: 35291028 |
[41] | 陈洛海, 陈旻湖, 陈洁. 胃肠胰神经内分泌肿瘤循环生物标记物研究进展[J]. 中华胃肠外科杂志, 2017, 20(3): 357-360. |
CHEN L H, CHEN M H, CHEN J. Advances of circulating biomarkers in gastroenteropancreatic neuroendocrine neoplasms[J]. Chin J Gastrointest Surg, 2017, 20(3): 357-360. | |
[42] |
HOFLAND J, ZANDEE W T, DE HERDER W W. Role of biomarker tests for diagnosis of neuroendocrine tumours[J]. Nat Rev Endocrinol, 2018, 14: 656-669.
doi: 10.1038/s41574-018-0082-5 pmid: 30158549 |
[43] | MAROTTA V, ZATELLI M C, SCIAMMARELLA C, et al. Chromogranin A as circulating marker for diagnosis and management of neuroendocrine neoplasms: more flaws than fame[J]. Endocr Relat Cancer, 2018, 25(1): R11-R29. |
[44] |
KALTSAS G, CAPLIN M, DAVIES P, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pre- and perioperative therapy in patients with neuroendocrine tumors[J]. Neuroendocrinology, 2017, 105(3): 245-254.
doi: 10.1159/000461583 pmid: 28253514 |
[45] | NOBELS F R, KWEKKEBOOM D J, COOPMANS W, et al. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones[J]. J Clin Endocrinol Metab, 1997, 82(8): 2622-2628. |
[46] | BAUDIN E, GIGLIOTTI A, DUCREUX M, et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours[J]. Br J Cancer, 1998, 78(8): 1102-1107. |
[47] |
CHEN L H, ZHANG Y, LIN Y, et al. The role of elevated serum procalcitonin in neuroendocrine neoplasms of digestive system[J]. Clin Biochem, 2017, 50(18): 982-987.
doi: S0009-9120(17)30389-2 pmid: 28668469 |
[48] |
MEIJER W G, KEMA I P, VOLMER M, et al. Discriminating capacity of indole markers in the diagnosis of carcinoid tumors[J]. Clin Chem, 2000, 46(10): 1588-1596.
pmid: 11017936 |
[49] | MODLIN I M, DROZDOV I, KIDD M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood[J]. PLoS One, 2013, 8(5): e63364. |
[50] | MODLIN I M, DROZDOV I, ALAIMO D, et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection[J]. Endocr Relat Cancer, 2014, 21(4): 615-628. |
[51] |
MODLIN I M, KIDD M, FALCONI M, et al. A multigenomic liquid biopsy biomarker for neuroendocrine tumor disease outperforms CgA and has surgical and clinical utility[J]. Ann Oncol, 2021, 32(11): 1425-1433.
doi: 10.1016/j.annonc.2021.08.1746 pmid: 34390828 |
[52] | KIM M, KIM B H. Current guidelines for management of medullary thyroid carcinoma[J]. Endocrinol Metab, 2021, 36(3): 514-524. |
[53] |
BOILÈVE A, FARON M, FODIL-CHERIF S, et al. Molecular profiling and target actionability for precision medicine in neuroendocrine neoplasms: real-world data[J]. Eur J Cancer, 2023, 186: 122-132.
doi: 10.1016/j.ejca.2023.03.024 pmid: 37062210 |
[54] |
PUCCINI A, POORMAN K, SALEM M E, et al. Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs)[J]. Clin Cancer Res, 2020, 26(22): 5943-5951.
doi: 10.1158/1078-0432.CCR-20-1804 pmid: 32883742 |
[55] | CHEN L H, LIU M, ZHANG Y X, et al. Genetic characteristics of colorectal neuroendocrine carcinoma: more similar to colorectal adenocarcinoma[J]. Clin Colorectal Cancer, 2021, 20(2): 177-185.e13. |
[56] |
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247.
doi: 10.1016/j.ejca.2008.10.026 pmid: 19097774 |
[57] | YU R, WACHSMAN A. Imaging of neuroendocrine tumors: Indications, interpretations, limits, and pitfalls[J]. Endocrinol Metab Clin North Am, 2017, 46(3): 795-814. |
[58] |
PAVEL M, ÖBERG K, FALCONI M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2020, 31(7): 844-860.
doi: S0923-7534(20)36394-8 pmid: 32272208 |
[59] |
LO G C, KAMBADAKONE A. MR imaging of pancreatic neuroendocrine tumors[J]. Magn Reson Imaging Clin N Am, 2018, 26(3): 391-403.
doi: S1064-9689(18)30023-0 pmid: 30376977 |
[60] | SUNDIN A, ARNOLD R, BAUDIN E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine & hybrid imaging[J]. Neuroendocrinology, 2017, 105(3): 212-244. |
[61] | DAVAR J, CONNOLLY H M, CAPLIN M E, et al. Diagnosing and managing carcinoid heart disease in patients with neuroendocrine tumors: an expert statement[J]. J Am Coll Cardiol, 2017, 69(10): 1288-1304. |
[62] | JUCHEMS M. Neuroendocrine tumors of the abdomen[J]. Radiologe, 2018, 58(1): 36-44. |
[63] | SRIRAJASKANTHAN R, KAYANI I, QUIGLEY A M, et al. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy[J]. J Nucl Med, 2010, 51(6): 875-882. |
[64] | POBŁOCKI J, JASIŃSKA A, SYRENICZ A, et al. The neuroendocrine neoplasms of the digestive tract: diagnosis, treatment and nutrition[J]. Nutrients, 2020, 12(5): 1437. |
[65] | BEIDERWELLEN K, SABET A, LAUENSTEIN T C, et al. Pancreatic neuroendocrine neoplasms[J]. Radiologe, 2016, 56(4): 348-354. |
[66] | PAUWELS E, CLEEREN F, BORMANS G, et al. Somatostatin receptor PET ligands-the next generation for clinical practice[J]. Am J Nucl Med Mol Imaging, 2018, 8(5): 311-331. |
[67] | BONAZZI N, FORTUNATI E, ZANONI L, et al. Real-life use of[68Ga]Ga-DOTANOC PET/CT in confirmed and suspected NETs from a prospective 5-year electronic archive at an ENETS center of excellence: more than 2 000 scans in more than 1 500 patients[J]. Cancers, 2024, 16(4): 701. |
[68] | HAEGER A, SOZA-RIED C, KRAMER V, et al. Al[18F]F-NOTA-octreotide is comparable to[68Ga]Ga-DOTA-TATE for PET/CT imaging of neuroendocrine tumours in the latin-american population[J]. Cancers, 2023, 15(2): 439. |
[69] | HOU G Z, CHENG X, YANG Y, et al. Diagnostic performance and clinical impact of 18F-AlF-NOTA-octreotide in a large cohort of patients with neuroendocrine neoplasms: a prospective single-center study[J]. Theranostics, 2024, 14(8): 3213-3220. |
[70] | CHEN L H, JUMAI N, HE Q, et al. The role of quantitative tumor burden based on[68Ga]Ga-DOTA-NOC PET/CT in well-differentiated neuroendocrine tumors: beyond prognosis[J]. Eur J Nucl Med Mol Imag, 2023, 50(2): 525-534. |
[71] | AKHAVANALLAF A, JOSHI S, MOHAN A, et al. Enhancing precision: a predictive model for 177Lu-DOTATATE treatment response in neuroendocrine tumors using quantitative 68Ga-DOTATATE PET and clinicopathological biomarkers[J]. Theranostics, 2024, 14(9): 3708-3718. |
[72] | LEE H, KIPNIS S T, NIMAN R, et al. Prediction of 177Lu-DOTATATE therapy outcomes in neuroendocrine tumor patients using semi-automatic tumor delineation on 68Ga-DOTATATE PET/CT[J]. Cancers, 2023, 16(1): 200. |
[73] | AL-TOUBAH T, MONTILLA-SOLER J, EL-HADDAD G, et al. Somatostatin receptor expression in lung neuroendocrine tumors: an analysis of DOTATATE PET scans[J]. J Nucl Med, 2023, 64(12): 1895-1898. |
[74] | BINDERUP T, KNIGGE U, LOFT A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET[J]. J Nucl Med, 2010, 51(5): 704-712. |
[75] | AMBROSINI V, CAPLIN M, CASTAÑO J P, et al. Use and perceived utility of[18F]FDG PET/CT in neuroendocrine neoplasms: a consensus report from the European Neuroendocrine Tumor Society (ENETS) Advisory Board Meeting 2022[J]. J Neuroendocrinology, 2024, 36(1), e13359. |
[76] | KAEWPUT C, VINJAMURI S. Role of combined 68Ga dota-peptides and 18F FDG PET/CT in the evaluation of gastroenteropancreatic neuroendocrine neoplasms[J]. Diagnostics, 2022, 12(2): 280. |
[77] | RINZIVILLO M, PARTELLI S, PROSPERI D, et al. Clinical usefulness of 18F-fluorodeoxyglucose positron emission tomography in the diagnostic algorithm of advanced entero-pancreatic neuroendocrine neoplasms[J]. Oncologist, 2018, 23(2): 186-192. |
[78] | BINDERUP T, KNIGGE U, JOHNBECK C B, et al. 18F-FDG PET is superior to WHO grading as a prognostic tool in neuroendocrine neoplasms and useful in guiding PRRT: a prospective 10-year follow-up study[J]. J Nucl Med, 2021, 62(6): 808-815. |
[79] | CHAN D L, HAYES A R, KARFIS I, et al. [18F]FDG PET/CT-avid discordant volume as a biomarker in patients with gastroenteropancreatic neuroendocrine neoplasms: a multicenter study[J]. J Nucl Med, 2024, 65(2): 185-191. |
[80] | DE RYCKE O, PERRIER M, OUVRARD É, et al. High tumor uptake on 18F-FDOPA PET/CT indicates poor prognosis in patients with metastatic midgut neuroendocrine tumors: a study from the groupe d'étude des tumeurs endocrines and ENDOCAN-RENATEN network[J]. J Nucl Med, 2023, 64(11): 1699-1705. |
[81] | HE Q, ZHANG Z K, ZHANG L Q, et al. Head-to-head comparison between[68Ga]Ga-DOTA-NOC and[18F]DOPA PET/CT in a diverse cohort of patients with pheochromocytomas and paragangliomas[J]. Eur J Nucl Med Mol Imag, 2024, 51(7): 1989-2001. |
[82] | BOZKURT M F, VIRGOLINI I, BALOGOVA S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA[J]. Eur J Nucl Med Mol Imaging, 2017, 44(9): 1588-1601. |
[83] | ZHANG Z Q, YU J, RAINER E, et al. The role of[18F]F-DOPA PET/CT in diagnostic and prognostic assessment of medullary thyroid cancer: a 15-year experience with 109 patients[J]. Eur Thyroid J, 2024, 13(4): e240089. |
[84] | CHANG L N, BI X Y, LI S, et al. The comparison of three different molecular imaging methods in localization and grading of insulinoma[J]. Front Endocrinol, 2023, 14: 1163176. |
[85] | VESTERINEN T, PELTOLA E, LEIJON H, et al. Immunohistochemical glucagon-like peptide-1 receptor expression in human insulinomas[J]. Int J Mol Sci, 2023, 24(20): 15164. |
[86] | GANGULY T, BAUER N, DAVIS R A, et al. Preclinical evaluation of 68Ga- and 177Lu-labeled integrin αvβ6-targeting radiotheranostic peptides[J]. J Nucl Med, 2023, 64(4): 639-644. |
[87] | LUO Y P, PAN Q Q, YAO S B, et al. Glucagon-like peptide-1 receptor PET/CT with 68Ga-NOTA-exendin-4 for detecting localized insulinoma: a prospective cohort study[J]. J Nucl Med, 2016, 57(5): 715-720. |
[88] | HÖRSCH D, SCHMID K W, ANLAUF M, et al. Neuroendocrine tumors of the bronchopulmonary system (typical and atypical carcinoid tumors): current strategies in diagnosis and treatment. Conclusions of an expert meeting February 2011 in Weimar, Germany[J]. Oncol Res Treat, 2014, 37(5): 266-276. |
[89] |
CAPLIN M E, BAUDIN E, FEROLLA P, et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids[J]. Ann Oncol, 2015, 26(8): 1604-1620.
doi: 10.1093/annonc/mdv041 pmid: 25646366 |
[90] |
TABAKSBLAT E M, LANGER S W, KNIGGE U, et al. Diagnosis and treatment of bronchopulmonary neuroendocrine tumours: state of the art[J]. Acta Oncol, 2016, 55(1): 3-14.
doi: 10.3109/0284186X.2015.1067715 pmid: 26223571 |
[91] |
SINGH S, BERGSLAND E K, CARD C M, et al. Commonwealth neuroendocrine tumour research collaboration and the North American Neuroendocrine Tumor Society guidelines for the diagnosis and management of patients with lung neuroendocrine tumors: an international collaborative endorsement and update of the 2015 European Neuroendocrine Tumor Society expert consensus guidelines[J]. J Thorac Oncol, 2020, 15(10): 1577-1598.
doi: S1556-0864(20)30548-7 pmid: 32663527 |
[92] | GUO X R, ZHAO X H, HUANG G, et al. Advances in endoscopic diagnosis and treatment of gastric neuroendocrine neoplasms[J]. Dig Dis Sci, 2024, 69(1): 27-35. |
[93] | BORBATH I, PAPE U F, DEPREZ P H, et al. ENETS standardized (synoptic) reporting for endoscopy in neuroendocrine tumors[J]. J Neuroendocrinol, 2022, 34(3): e13105. |
[94] | PANZUTO F, PARODI M C, ESPOSITO G, et al. Endoscopic management of gastric, duodenal and rectal NETs: position paper from the Italian Association for Neuroendocrine Tumors (Itanet), Italian Society of Gastroenterology (SIGE), Italian Society of Digestive Endoscopy (SIED)[J]. Dig Liver Dis, 2024, 56(4): 589-600. |
[95] | LAMBERTI G, PANZUTO F, PAVEL M, et al. Gastric neuroendocrine neoplasms[J]. Nat Rev Dis Primers, 2024, 10(1): 25. |
[96] | CHONÉ A, WALTER T, RIVORY J, et al. Gastric neuroendocrine tumors display deep invasive features, with amorphous pit and irregular vascular pattern, using narrow-band imaging and magnification[J]. Endoscopy, 2018, 50(8): E199-E201. |
[97] | SATO Y, HASHIMOTO S, MIZUNO K I, et al. Management of gastric and duodenal neuroendocrine tumors[J]. World J Gastroenterol, 2016, 22(30): 6817-6828. |
[98] |
RAMAGE J K, DE HERDER W W, FAVE G D, et al. ENETS consensus guidelines update for colorectal neuroendocrine neoplasms[J]. Neuroendocrinology, 2016, 103(2): 139-143.
doi: 10.1159/000443166 pmid: 26730835 |
[99] | RINKE A, AMBROSINI V, DROMAIN C, et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for colorectal neuroendocrine tumours[J]. J Neuroendocrinol, 2023, 35(6): e13309. |
[100] |
O’TOOLE D, PALAZZO L. Endoscopy and endoscopic ultrasound in assessing and managing neuroendocrine neoplasms[J]. Front Horm Res, 2015, 44: 88-103.
doi: 10.1159/000382062 pmid: 26303706 |
[101] | CHEN L H, GUO Y, ZHANG Y X, et al. Development of a novel scoring system based on endoscopic appearance for management of rectal neuroendocrine tumors[J]. Endoscopy, 2021, 53(7): 702-709. |
[102] | VEYRE F, LAMBIN T, FINE C, et al. Endoscopic characterization of rectal neuroendocrine tumors with virtual chromoendoscopy: differences between benign and malignant lesions[J]. Endoscopy, 2021, 53(6): E215-E216. |
[103] |
KHASHAB M A, YONG E, LENNON A M, et al. EUS is still superior to multidetector computerized tomography for detection of pancreatic neuroendocrine tumors[J]. Gastrointest Endosc, 2011, 73(4): 691-696.
doi: 10.1016/j.gie.2010.08.030 pmid: 21067742 |
[104] |
DI LEO M, POLIANI L, RAHAL D, et al. Pancreatic neuroendocrine tumours: the role of endoscopic ultrasound biopsy in diagnosis and grading based on the WHO 2017 classification[J]. Dig Dis, 2019, 37(4): 325-333.
doi: 10.1159/000499172 pmid: 30897588 |
[105] | COSTA R D D, KEMP R, SANTOS J S D, et al. The role of conventional echoendoscopy (EUS) in therapeutic decisions in patients with neuroendocrine gastrointestinal tumors[J]. Arq Bras Cir Dig, 2020, 33(2): e1512. |
[106] |
PELLICANO R, FAGOONEE S, ALTRUDA F, et al. Endoscopic imaging in the management of gastroenteropancreatic neuroendocrine tumors[J]. Minerva Endocrinol, 2016, 41(4): 490-498.
pmid: 27600643 |
[107] |
RUSTAGI T, FARRELL J J. Endoscopic diagnosis and treatment of pancreatic neuroendocrine tumors[J]. J Clin Gastroenterol, 2014, 48(10): 837-844.
doi: 10.1097/MCG.0000000000000152 pmid: 24828360 |
[108] | PULI S R, KALVA N, BECHTOLD M L, et al. Diagnostic accuracy of endoscopic ultrasound in pancreatic neuroendocrine tumors: a systematic review and meta analysis[J]. World J Gastroenterol, 2013, 19(23): 3678-3684. |
[109] | KOS-KUDŁA B, BLICHARZ-DORNIAK J, STRZELCZYK J, et al. Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours)[J]. Endokrynologia Polska, 2017, 68(2): 79-110. |
[110] |
KIM M K. Endoscopic ultrasound in gastroenteropancreatic neuroendocrine tumors[J]. Gut Liver, 2012, 6(4): 405-410.
doi: 10.5009/gnl.2012.6.4.405 pmid: 23170141 |
[111] | IGLESIAS-GARCIA J, LARINO-NOIA J, ABDULKADER I, et al. Quantitative endoscopic ultrasound elastography: an accurate method for the differentiation of solid pancreatic masses[J]. Gastroenterology, 2010, 139(4): 1172-1180. |
[112] |
VAN ASSELT S J, BROUWERS A H, VAN DULLEMEN H M, et al. EUS is superior for detection of pancreatic lesions compared with standard imaging in patients with multiple endocrine neoplasia type 1[J]. Gastrointest Endosc, 2015, 81(1): 159-167.e2.
doi: 10.1016/j.gie.2014.09.037 pmid: 25527055 |
[113] | BATTISTELLA A, TACELLI M, MAPELLI P, et al. Recent developments in the diagnosis of pancreatic neuroendocrine neoplasms[J]. Expert Rev Gastroenterol Hepatol, 2024, 18(4/5): 155-169. |
[114] | 中华医学会消化病学分会胃肠激素与神经内分泌肿瘤学组. 胃肠胰神经内分泌肿瘤诊治专家共识(2020·广州)[J]. 中华消化杂志, 2021, 41(2): 76-87. |
Gastrointestinal Hormone and Neuroendocrine Tumor Group, Gastroenterology Branch of the Chinese Medical Association. Expert consensus on diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasm (2020, Guangzhou)[J]. Chin J Dig, 2021, 41(2): 76-87. | |
[115] |
NAGTEGAAL I, ODZE R, KLIMSTRA D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188.
doi: 10.1111/his.13975 pmid: 31433515 |
[116] | RUFFINI E, HUANG J, CILENTO V, et al. The international association for the study of lung cancer thymic epithelial tumors staging project: proposal for a stage classification for the forthcoming (ninth) edition of the TNM classification of malignant tumors[J]. J Thorac Oncol, 2023, 18(12): 1655-1671. |
[117] | RAMI-PORTA R, NISHIMURA K K, GIROUX D J, et al. The international association for the study of lung cancer lung cancer staging project: proposals for revision of the TNM stage groups in the forthcoming (ninth) edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2024, 19(7): 1007-1027. |
[118] |
ALEXANDRAKI K I, TSOLI M, KYRIAKOPOULOS G, et al. Current concepts in the diagnosis and management of neuroendocrine neoplasms of unknown primary origin[J]. Minerva Endocrinol, 2019, 44(4): 378-386.
doi: 10.23736/S0391-1977.19.03012-8 pmid: 30991795 |
[119] | CORTI F, ROSSI R E, CAFARO P, et al. Emerging treatment options for neuroendocrine neoplasms of unknown primary origin: current evidence and future perspectives[J]. Cancers, 2024, 16(11): 2025. |
[120] | BERNER A M, PIPINIKAS C, RYAN A, et al. Diagnostic approaches to neuroendocrine neoplasms of unknown primary site[J]. Neuroendocrinology, 2020, 110(7/8): 563-573. |
[121] | SCHMIDT M, HINTERLEITNER C, SINGER S, et al. Diagnostic approaches for neuroendocrine neoplasms of unknown primary (NEN-UPs) and their prognostic relevance-a retrospective, long-term single-center experience[J]. Cancers, 2023, 15(17): 4316. |
[122] | JUHLIN C C, ZEDENIUS J, HÖÖG A. Metastatic neuroendocrine neoplasms of unknown primary: Clues from pathology workup[J]. Cancers, 2022, 14(9): 2210. |
[123] |
FAVE G D, O’TOOLE D, SUNDIN A, et al. ENETS consensus guidelines update for gastroduodenal neuroendocrine neoplasms[J]. Neuroendocrinology, 2016, 103(2): 119-124.
doi: 10.1159/000443168 pmid: 26784901 |
[124] | BASUROY R, SRIRAJASKANTHAN R, PRACHALIAS A, et al. Review article: the investigation and management of gastric neuroendocrine tumours[J]. Aliment Pharmacol Ther, 2014, 39(10): 1071-1084. |
[125] | MAIONE F, CHINI A, MILONE M, et al. Diagnosis and management of rectal neuroendocrine tumors (NETs)[J]. Diagnostics, 2021, 11(5): 771. |
[126] | KOS-KUDŁA B, CASTAÑO J P, DENECKE T, et al. European Neuroendocrine Tumour Society (ENETS) 2023 guidance paper for nonfunctioning pancreatic neuroendocrine tumours[J]. J Neuroendocrinol, 2023, 35(12): e13343. |
[127] | SO H, KO S W, SHIN S H, et al. Comparison of EUS-guided ablation and surgical resection for nonfunctioning small pancreatic neuroendocrine tumors: a propensity score-matching study[J]. Gastrointest Endosc, 2023, 97(4): 741-751.e1. |
[128] | CRINÒ S F, NAPOLEON B, FACCIORUSSO A, et al. Endoscopic ultrasound-guided radiofrequency ablation versus surgical resection for treatment of pancreatic insulinoma[J]. Clin Gastroenterol Hepatol, 2023, 21(11): 2834-2843.e2. |
[129] | PARTELLI S, MASSIRONI S, ZERBI A, et al. Management of asymptomatic sporadic non-functioning pancreatic neuroendocrine neoplasms no larger than 2 Cm: interim analysis of prospective ASPEN trial[J]. Br J Surg, 2022, 109(12): 1186-1190. |
[130] | CROSBY D A, DONOHOE C L, FITZGERALD L, et al. Gastric neuroendocrine tumours[J]. Dig Surg, 2012, 29(4): 331-348. |
[131] |
KALTSAS G, GROZINSKY-GLASBERG S, ALEXANDRAKI K I, et al. Current concepts in the diagnosis and management of type 1 gastric neuroendocrine neoplasms[J]. Clin Endocrinol, 2014, 81(2): 157-168.
doi: 10.1111/cen.12476 pmid: 24750249 |
[132] |
MATSUMOTO S, MIYATANI H, YOSHIDA Y. Future directions of duodenal endoscopic submucosal dissection[J]. World J Gastrointest Endosc, 2015, 7(4): 389-395.
doi: 10.4253/wjge.v7.i4.389 pmid: 25901218 |
[133] |
HOTEYA S, KAISE M, IIZUKA T, et al. Delayed bleeding after endoscopic submucosal dissection for non-ampullary superficial duodenal neoplasias might be prevented by prophylactic endoscopic closure: analysis of risk factors[J]. Dig Endosc, 2015, 27(3): 323-330.
doi: 10.1111/den.12377 pmid: 25186455 |
[134] |
MATSUMOTO S, MIYATANI H, YOSHIDA Y, et al. Duodenal carcinoid tumors: 5 cases treated by endoscopic submucosal dissection[J]. Gastrointest Endosc, 2011, 74(5): 1152-1156.
doi: 10.1016/j.gie.2011.07.029 pmid: 21944312 |
[135] |
MORI H, SHINTARO F, KOBARA H, et al. Successful closing of duodenal ulcer after endoscopic submucosal dissection with over-the-scope clip to prevent delayed perforation[J]. Dig Endosc, 2013, 25(4): 459-461.
doi: 10.1111/j.1443-1661.2012.01363.x pmid: 23368742 |
[136] | TAKIMOTO K, IMAI Y, MATSUYAMA K. Endoscopic tissue shielding method with polyglycolic acid sheets and fibrin glue to prevent delayed perforation after duodenal endoscopic submucosal dissection[J]. Dig Endosc, 2014, 26(Suppl 2): 46-49. |
[137] |
MAKHLOUF H R, BURKE A P, SOBIN L H. Carcinoid tumors of the ampulla of Vater: a comparison with duodenal carcinoid tumors[J]. Cancer, 1999, 85(6): 1241-1249.
pmid: 10189128 |
[138] | 刘雪梅, 庹必光. 胃肠神经内分泌肿瘤的内镜诊断与治疗[J]. 中华胃肠外科杂志, 2021, 24(10): 854-860. |
LIU X M, TUO B G. Endoscopic diagnosis and treatment of gastrointestinal neuroendocrine neoplasms[J]. Chin J Gastrointest Surg, 2021, 24(10): 854-860. | |
[139] |
ITO T, MASUI T, KOMOTO I, et al. JNETS clinical practice guidelines for gastroenteropancreatic neuroendocrine neoplasms: diagnosis, treatment, and follow-up: a synopsis[J]. J Gastroenterol, 2021, 56(11): 1033-1044.
doi: 10.1007/s00535-021-01827-7 pmid: 34586495 |
[140] |
MOON C M, HUH K C, JUNG S A, et al. Long-term clinical outcomes of rectal neuroendocrine tumors according to the pathologic status after initial endoscopic resection: a KASID multicenter study[J]. Am J Gastroenterol, 2016, 111(9): 1276-1285.
doi: 10.1038/ajg.2016.267 pmid: 27377520 |
[141] | SUN D, REN Z, XU E P, et al. Long-term clinical outcomes of endoscopic submucosal dissection in rectal neuroendocrine tumors based on resection margin status: a real-world study[J]. Surg Endosc, 2023, 37(4): 2644-2652. |
[142] | WU W M, CAI S W, CHEN R F, et al. Consensus of clinical diagnosis and treatment for non-functional pancreatic neuroendocrine neoplasms with diameter <2 cm[J]. J Pancreatol, 2023, 6(3): 87-95. |
[143] |
PARTELLI S, CIROCCHI R, CRIPPA S, et al. Systematic review of active surveillance versus surgical management of asymptomatic small non-functioning pancreatic neuroendocrine neoplasms[J]. Br J Surg, 2017, 104(1): 34-41.
doi: 10.1002/bjs.10312 pmid: 27706803 |
[144] |
KUO E J, SALEM R R. Population-level analysis of pancreatic neuroendocrine tumors 2 cm or less in size[J]. Ann Surg Oncol, 2013, 20(9): 2815-2821.
doi: 10.1245/s10434-013-3005-7 pmid: 23771245 |
[145] | CHEN J, WU W M, BAI C M, et al. Consensus on the clinical diagnosis and treatment of grade 3 pancreatic neuroendocrine tumors[J]. J Pancreatol, 2024, 7(2):97-105. |
[146] | ZHANG X F, XUE F, DONG D H, et al. New nodal staging for primary pancreatic neuroendocrine tumors: a multi-institutional and national data analysis[J]. Ann Surg, 2021, 274(1): e28-e35. |
[147] | AL-HAWARY M M, FRANCIS I R, CHARI S T, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association[J]. Radiology, 2014, 270(1): 248-260. |
[148] |
SCHURR P G, STRATE T, RESE K, et al. Aggressive surgery improves long-term survival in neuroendocrine pancreatic tumors: an institutional experience[J]. Ann Surg, 2007, 245(2): 273-281.
doi: 10.1097/01.sla.0000232556.24258.68 pmid: 17245182 |
[149] |
JIN K Z, XU J, CHEN J, et al. Surgical management for non-functional pancreatic neuroendocrine neoplasms with synchronous liver metastasis: a consensus from the Chinese Study Group for Neuroendocrine Tumors (CSNET)[J]. Int J Oncol, 2016, 49(5): 1991-2000.
doi: 10.3892/ijo.2016.3711 pmid: 27826620 |
[150] | BERTANI E, FAZIO N, BOTTERI E, et al. Resection of the primary pancreatic neuroendocrine tumor in patients with unresectable liver metastases: possible indications for a multimodal approach[J]. Surgery, 2014, 155(4): 607-614. |
[151] |
DE JONG M C, FARNELL M B, SCLABAS G, et al. Liver-directed therapy for hepatic metastases in patients undergoing pancreaticoduodenectomy: a dual-center analysis[J]. Ann Surg, 2010, 252(1): 142-148.
doi: 10.1097/SLA.0b013e3181dbb7a7 pmid: 20531007 |
[152] |
OBERG K, KVOLS L, CAPLIN M, et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system[J]. Ann Oncol, 2004, 15(6): 966-973.
doi: 10.1093/annonc/mdh216 pmid: 15151956 |
[153] | HAN X, LOU W H. Concomitant pancreatic neuroendocrine tumors in hereditary tumor syndromes: who, when and how to operate?[J]. J Pancreatol, 2019, 2(2): 48-53. |
[154] | CHEN L H, ZHOU L, ZHANG M, et al. Clinicopathological features and prognostic validity of WHO grading classification of SI-NENs[J]. BMC Cancer, 2017, 17(1): 521. |
[155] |
NESTI C, BRÄUTIGAM K, BENAVENT M, et al. Hemicolectomy versus appendectomy for patients with appendiceal neuroendocrine tumours 1-2 cm in size: a retrospective, Europe-wide, pooled cohort study[J]. Lancet Oncol, 2023, 24(2): 187-194.
doi: 10.1016/S1470-2045(22)00750-1 pmid: 36640790 |
[156] | KALTSAS G, WALTER T, KNIGGE U, et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for appendiceal neuroendocrine tumours (aNET)[J]. J Neuroendocrinol, 2023, 35(10): e13332. |
[157] | PARTELLI S, INAMA M, RINKE A, et al. Long-term outcomes of surgical management of pancreatic neuroendocrine tumors with synchronous liver metastases[J]. Neuroendocrinology, 2015, 102(1/2): 68-76. |
[158] | CHI Y, JIANG L M, SHI S S, et al. Chinese expert consensus on multidisciplinary diagnosis and treatment of pancreatic neuroendocrine liver metastases[J]. J Pancreatol, 2023, 6(4): 139-150. |
[159] | FRILLING A, MODLIN I M, KIDD M, et al. Recommendations for management of patients with neuroendocrine liver metastases[J]. Lancet Oncol, 2014, 15(1): e8-e21. |
[160] | MACHAIRAS N, DASKALAKIS K, FELEKOURAS E, et al. Currently available treatment options for neuroendocrine liver metastases[J]. Ann Gastroenterol, 2021, 34(2): 130-141. |
[161] | GROZINSKY-GLASBERG S, DAVAR J, HOFLAND J, et al. European neuroendocrine tumor society (ENETS) 2022 guidance paper for carcinoid syndrome and carcinoid heart disease[J]. J Neuroendocrinol, 2022, 34(7): e13146. |
[162] | VAN DEN HEEDE K, VAN BEEK D J, VAN SLYCKE S, et al. Surgery for advanced neuroendocrine tumours of the small bowel: recommendations based on a consensus meeting of the European Society of Endocrine Surgeons (ESES)[J]. Br J Surg, 2024, 111(4): znae082. |
[163] |
LEWIS A, RAOOF M, ITUARTE P H G, et al. Resection of the primary gastrointestinal neuroendocrine tumor improves survival with or without liver treatment[J]. Ann Surg, 2019, 270(6): 1131-1137.
doi: 10.1097/SLA.0000000000002809 pmid: 29746336 |
[164] |
NORLÉN O, STÅLBERG P, ZEDENIUS J, et al. Outcome after resection and radiofrequency ablation of liver metastases from small intestinal neuroendocrine tumours[J]. Br J Surg, 2013, 100(11): 1505-1514.
doi: 10.1002/bjs.9262 pmid: 24037573 |
[165] |
FRILLING A, LI J, MALAMUTMANN E, et al. Treatment of liver metastases from neuroendocrine tumours in relation to the extent of hepatic disease[J]. Br J Surg, 2009, 96(2): 175-184.
doi: 10.1002/bjs.6468 pmid: 19160361 |
[166] | SCOTT A T, BREHENY P J, KECK K J, et al. Effective cytoreduction can be achieved in patients with numerous neuroendocrine tumor liver metastases (NETLMs)[J]. Surgery, 2019, 165(1): 166-175. |
[167] |
MAYO S C, DE JONG M C, PULITANO C, et al. Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis[J]. Ann Surg Oncol, 2010, 17(12): 3129-3136.
doi: 10.1245/s10434-010-1154-5 pmid: 20585879 |
[168] |
FAIRWEATHER M, SWANSON R, WANG J P, et al. Management of neuroendocrine tumor liver metastases: long-term outcomes and prognostic factors from a large prospective database[J]. Ann Surg Oncol, 2017, 24(8): 2319-2325.
doi: 10.1245/s10434-017-5839-x pmid: 28303430 |
[169] | WILLIAMS J K, SCHWARZ J L, KEUTGEN X M. Surgery for metastatic pancreatic neuroendocrine tumors: a narrative review[J]. Hepatobiliary Surg Nutr, 2023, 12(1): 69-83. |
[170] | HUANG X T, XIE J Z, CHEN L H, et al. Values of debulking surgery for unresectable well-differentiated metastatic pancreatic neuroendocrine tumors: a comparative study[J]. Gastroenterol Rep, 2023, 11: goad010. |
[171] | MAXWELL J E, SHERMAN S K, O’DORISIO T M, et al. Liver-directed surgery of neuroendocrine metastases: what is the optimal strategy?[J]. Surgery, 2016, 159(1): 320-333. |
[172] | SAXENA A, CHUA T C, PERERA M, et al. Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review[J]. Surg Oncol, 2012, 21(3): e131-e141. |
[173] |
ERIKSSON J, STÅLBERG P, NILSSON A, et al. Surgery and radiofrequency ablation for treatment of liver metastases from midgut and foregut carcinoids and endocrine pancreatic tumors[J]. World J Surg, 2008, 32(5): 930-938.
doi: 10.1007/s00268-008-9510-3 pmid: 18324347 |
[174] | MORGAN R E, POMMIER S J, POMMIER R F. Expanded criteria for debulking of liver metastasis also apply to pancreatic neuroendocrine tumors[J]. Surgery, 2018, 163(1): 218-225. |
[175] |
HALLET J, CLARKE C N. ASO practice guidelines series: Surgical management of gastrointestinal (midgut) neuroendocrine neoplasms[J]. Ann Surg Oncol, 2024, 31(3): 1704-1713.
doi: 10.1245/s10434-023-14802-8 pmid: 38167813 |
[176] | SORBYE H, GRANDE E, PAVEL M, et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for digestive neuroendocrine carcinoma[J]. J Neuroendocrinol, 2023, 35(3): e13249. |
[177] | EADS J R, HALFDANARSON T R, ASMIS T, et al. Expert Consensus Practice Recommendations of the North American Neuroendocrine Tumor Society for the management of high grade gastroenteropancreatic and gynecologic neuroendocrine neoplasms[J]. Endocr Relat Cancer, 2023, 30(8): e220206. |
[178] |
GALLEBERG R B, KNIGGE U, TIENSUU JANSON E, et al. Results after surgical treatment of liver metastases in patients with high-grade gastroenteropancreatic neuroendocrine carcinomas[J]. Eur J Surg Oncol, 2017, 43(9): 1682-1689.
doi: S0748-7983(17)30452-3 pmid: 28522174 |
[179] | ASANO D, KUDO A, AKAHOSHI K, et al. Curative surgery and ki-67 value rather than tumor differentiation predict the survival of patients with high-grade neuroendocrine neoplasms[J]. Ann Surg, 2022, 276(2): e108-e113. |
[180] | DU S D, WANG Z, SANG X T, et al. Surgical resection improves the outcome of the patients with neuroendocrine tumor liver metastases: large data from Asia[J]. Medicine, 2015, 94(2): e388. |
[181] | CRIPPA S, PARTELLI S, BASSI C, et al. Long-term outcomes and prognostic factors in neuroendocrine carcinomas of the pancreas: Morphology matters[J]. Surgery, 2016, 159(3): 862-871. |
[182] |
YOSHIDA T, HIJIOKA S, HOSODA W, et al. Surgery for pancreatic neuroendocrine tumor G3 and carcinoma G3 should be considered separately[J]. Ann Surg Oncol, 2019, 26(5): 1385-1393.
doi: 10.1245/s10434-019-07252-8 pmid: 30863939 |
[183] |
SOGA J, YAKUWA Y, OSAKA M. Carcinoid syndrome: a statistical evaluation of 748 reported cases[J]. J Exp Clin Cancer Res, 1999, 18(2): 133-141.
pmid: 10464698 |
[184] |
FRILLING A, CLIFT A K. Therapeutic strategies for neuroendocrine liver metastases[J]. Cancer, 2015, 121(8): 1172-1186.
doi: 10.1002/cncr.28760 pmid: 25274401 |
[185] | VALVI D, MEI X N, GUPTA M, et al. Younger age is associated with improved survival in patients undergoing liver transplantation alone for metastatic neuroendocrine tumors[J]. J Gastrointest Surg, 2021, 25(6): 1487-1493. |
[186] | LINE P D, DUELAND S. Liver transplantation for secondary liver tumours: the difficult balance between survival and recurrence[J]. J Hepatol, 2020, 73(6): 1557-1562. |
[187] |
LIM C, LAHAT E, OSSEIS M, et al. Liver transplantation for neuroendocrine tumors: what have we learned?[J]. Semin Liver Dis, 2018, 38(4): 351-356.
doi: 10.1055/s-0038-1669936 pmid: 30357772 |
[188] |
SPOLVERATO G, BAGANTE F, TSILIMIGRAS D I, et al. Liver transplantation in patients with liver metastases from neuroendocrine tumors[J]. Minerva Chir, 2019, 74(5): 399-406.
doi: 10.23736/S0026-4733.19.08119-7 pmid: 31280548 |
[189] |
MAZZAFERRO V, PULVIRENTI A, COPPA J. Neuroendocrine tumors metastatic to the liver: How to select patients for liver transplantation?[J]. J Hepatol, 2007, 47(4): 460-466.
doi: 10.1016/j.jhep.2007.07.004 pmid: 17697723 |
[190] |
ROSSI R E, BURROUGHS A K, CAPLIN M E. Liver transplantation for unresectable neuroendocrine tumor liver metastases[J]. Ann Surg Oncol, 2014, 21(7): 2398-2405.
doi: 10.1245/s10434-014-3523-y pmid: 24562931 |
[191] |
MAZZAFERRO V, SPOSITO C, COPPA J, et al. The long-term benefit of liver transplantation for hepatic metastases from neuroendocrine tumors[J]. Am J Transplant, 2016, 16(10): 2892-2902.
doi: 10.1111/ajt.13831 pmid: 27134017 |
[192] |
KIM J, ZIMMERMAN M A, HONG J C. Liver transplantation in the treatment of unresectable hepatic metastasis from neuroendocrine tumors[J]. J Gastrointest Oncol, 2020, 11(3): 601-608.
doi: 10.21037/jgo.2019.11.03 pmid: 32655939 |
[193] |
PAVEL M, BAUDIN E, COUVELARD A, et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary[J]. Neuroendocrinology, 2012, 95(2): 157-176.
doi: 10.1159/000335597 pmid: 22262022 |
[194] | CHEN L H, CHEN J. Perspective of neo-adjuvant/conversion and adjuvant therapy for pancreatic neuroendocrine tumors[J]. J Pancreatol, 2019, 2(3): 91-99. |
[195] | PARTELLI S, LANDONI L, BARTOLOMEI M, et al. Neoadjuvant 177Lu-DOTATATE for non-functioning pancreatic neuroendocrine tumours (NEOLUPANET): multicentre phase Ⅱ study[J]. Br J Surg, 2024, 111(9): znae178. |
[196] | PARGHANE R V, BHANDARE M, CHAUDHARI V, et al. Surgical feasibility, determinants, and overall efficacy of neoadjuvant 177Lu-DOTATATE PRRT for locally advanced unresectable gastroenteropancreatic neuroendocrine tumors[J]. J Nucl Med, 2021, 62(11): 1558-1563. |
[197] |
VEZZOSI D, BENNET A, ROCHAIX P, et al. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies[J]. Eur J Endocrinol, 2005, 152(5): 757-767.
pmid: 15879362 |
[198] |
WOLTERING E A, WRIGHT A E, STEVENS M A, et al. Development of effective prophylaxis against intraoperative carcinoid crisis[J]. J Clin Anesth, 2016, 32: 189-193.
doi: 10.1016/j.jclinane.2016.03.008 pmid: 27290972 |
[199] |
WOLIN E M, BENSON III A B. Systemic treatment options for carcinoid syndrome: a systematic review[J]. Oncology, 2019, 96(6): 273-289.
doi: 10.1159/000499049 pmid: 31018209 |
[200] | BRODER M S, BEENHOUWER D, STROSBERG J R, et al. Gastrointestinal neuroendocrine tumors treated with high dose octreotide-LAR: a systematic literature review[J]. World J Gastroenterol, 2015, 21(6): 1945-1955. |
[201] | WOLIN E M, JARZAB B, ERIKSSON B, et al. Phase Ⅲ study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues[J]. Drug Des Devel Ther, 2015, 9: 5075-5086. |
[202] | PAVEL M, VALLE J W, ERIKSSON B, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: systemic therapy-biotherapy and novel targeted agents[J]. Neuroendocrinology, 2017, 105(3): 266-280. |
[203] | PAVEL M, GROSS D J, BENAVENT M, et al. Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial[J]. Endocr Relat Cancer, 2018, 25(3): 309-322. |
[204] |
ITO T, LEE L, JENSEN R T. Treatment of symptomatic neuroendocrine tumor syndromes: recent advances and controversies[J]. Expert Opin Pharmacother, 2016, 17(16): 2191-2205.
pmid: 27635672 |
[205] | GIUSTINA A, BARKHOUDARIAN G, BECKERS A, et al. Multidisciplinary management of acromegaly: a consensus[J]. Rev Endocr Metab Disord, 2020, 21(4): 667-678. |
[206] | TRAINER P J, DRAKE W M, KATZNELSON L, et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant[J]. N Engl J Med, 2000, 342(16): 1171-1177. |
[207] | PETERSENN S, FLESERIU M, CASANUEVA F, et al. Author Correction: diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international consensus statement[J]. Nat Rev Endocrinol, 2023, 20: 62. |
[208] | FLESERIU M, AUCHUS R, BANCOS I, et al. Consensus on diagnosis and management of Cushing’s disease: a guideline update[J]. Lancet Diabetes Endocrinol, 2021, 9(12): 847-875. |
[209] | DELIVANIS D A, SHARMA A, HAMIDI O, et al. Advances in the diagnosis and medical management of Cushing’s syndrome[M]// Advances in treatment and management in surgical endocrinology. Amsterdam: Elsevier, 2020: 151-174. |
[210] |
LENDERS J W M, EISENHOFER G, MANNELLI M, et al. Phaeochromocytoma[J]. Lancet, 2005, 366(9486): 665-675.
doi: 10.1016/S0140-6736(05)67139-5 pmid: 16112304 |
[211] | FAGUNDES G F C, ALMEIDA M Q. Perioperative management of pheochromocytomas and sympathetic paragangliomas[J]. J Endocr Soc, 2022, 6(2): bvac004. |
[212] | ZAGZAG J, HU M I, FISHER S B, et al. Hypercalcemia and cancer: differential diagnosis and treatment[J]. CA Cancer J Clin, 2018, 68(5): 377-386. |
[213] | JUNAID S Z S, PATEL P, PATEL J B. Cinacalcet[M]. Treasure Island (FL): StatPearls Publishing, 2024. |
[214] |
RINKE A, MÜLLER H H, SCHADE-BRITTINGER C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group[J]. J Clin Oncol, 2009, 27(28): 4656-4663.
doi: 10.1200/JCO.2009.22.8510 pmid: 19704057 |
[215] | BAUDIN E, CAPDEVILA J, HÖRSCH D, et al. Treatment of advanced BP-NETS with lanreotide autogel/depot vs placebo: the phase Ⅲ SPINET study[J]. Endocr Relat Cancer, 2024, 31(9): e230337. |
[216] |
PAVEL M, ĆWIKŁA J B, LOMBARD-BOHAS C, et al. Efficacy and safety of high-dose lanreotide autogel in patients with progressive pancreatic or midgut neuroendocrine tumours: CLARINET FORTE phase 2 study results[J]. Eur J Cancer, 2021, 157: 403-414.
doi: 10.1016/j.ejca.2021.06.056 pmid: 34597974 |
[217] | STROSBERG J, EL-HADDAD G, WOLIN E, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors[J]. N Engl J Med, 2017, 376(2): 125-135. |
[218] | RAVEROT G, BURMAN P, MCCORMACK A, et al. European Society of Endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas[J]. Eur J Endocrinol, 2018, 178(1): G1-G24. |
[219] |
YAO J C, FAZIO N, SINGH S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study[J]. Lancet, 2016, 387(10022): 968-977.
doi: S0140-6736(15)00817-X pmid: 26703889 |
[220] | LANG M, HACKERT T, ANAMATEROU C. Long-term effect of everolimus in recurrent thymic neuroendocrine neoplasia[J]. Clin Endocrinol, 2021, 95(5): 744-751. |
[221] |
PAVEL M E, HAINSWORTH J D, BAUDIN E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study[J]. Lancet, 2011, 378(9808): 2005-2012.
doi: S0140-6736(11)61742-X pmid: 22119496 |
[222] |
FAZIO N, GRANBERG D, GROSSMAN A, et al. Everolimus plus octreotide long-acting repeatable in patients with advanced lung neuroendocrine tumors: analysis of the phase 3, randomized, placebo-controlled RADIANT-2 study[J]. Chest, 2013, 143(4): 955-962.
doi: S0012-3692(13)60204-4 pmid: 23187897 |
[223] |
PAVEL M E, BAUDIN E, ÖBERG K E, et al. Efficacy of everolimus plus octreotide LAR in patients with advanced neuroendocrine tumor and carcinoid syndrome: final overall survival from the randomized, placebo-controlled phase 3 RADIANT-2 study[J]. Ann Oncol, 2019, 30(12): 2010.
doi: S0923-7534(20)32545-X pmid: 31987306 |
[224] | CASTELLANO D, BAJETTA E, PANNEERSELVAM A, et al. Everolimus plus octreotide long-acting repeatable in patients with colorectal neuroendocrine tumors: a subgroup analysis of the phase Ⅲ RADIANT-2 study[J]. Oncologist, 2013, 18(1): 46-53. |
[225] | PANZUTO F, RINZIVILLO M, SPADA F, et al. Everolimus in pancreatic neuroendocrine carcinomas G3[J]. Pancreas, 2017, 46(3): 302-305. |
[226] | WANG Y H, JIN K Z, TAN H Y, et al. Sunitinib is effective and tolerable in Chinese patients with advanced pancreatic neuroendocrine tumors: a multicenter retrospective study in China[J]. Cancer Chemother Pharmacol, 2017, 80(3): 507-516. |
[227] | RAYMOND E, DAHAN L, RAOUL J L, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors[J]. N Engl J Med, 2011, 364(6): 501-513. |
[228] | RAVAUD A, DE LA FOUCHARDIÈRE C, CARON P, et al. A multicenter phase Ⅱ study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study[J]. Eur J Cancer, 2017, 76: 110-117. |
[229] | BAUDIN E, GOICHOT B, BERRUTI A, et al. Sunitinib for metastatic progressive phaeochromocytomas and paragangliomas: results from FIRSTMAPPP, an academic, multicentre, international, randomised, placebo-controlled, double-blind, phase 2 trial[J]. Lancet, 2024, 403(10431): 1061-1070. |
[230] | CHEN J Y, JI Q H, BAI C M, et al. Surufatinib in Chinese patients with locally advanced or metastatic differentiated thyroid cancer and medullary thyroid cancer: a multicenter, open-label, phase Ⅱ trial[J]. Thyroid, 2020, 30(9): 1245-1253. |
[231] | CAPDEVILA J, FAZIO N, LOPEZ C, et al. Lenvatinib in patients with advanced grade 1/2 pancreatic and gastrointestinal neuroendocrine tumors: results of the phase Ⅱ TALENT trial (GETNE1509)[J]. J Clin Oncol, 2021, 39(20): 2304-2312. |
[232] | SCHLUMBERGER M, JARZAB B, CABANILLAS M E, et al. A phaseⅡtrial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer[J]. Clin Cancer Res, 2016, 22(1): 44-53. |
[233] | CHAN J A, GEYER S, ZEMLA T, et al. Phase 3 trial of cabozantinib to treat advanced neuroendocrine tumors[J]. N Engl J Med, 2024. |
[234] |
ELISEI R, SCHLUMBERGER M J, MÜLLER S P, et al. Cabozantinib in progressive medullary thyroid cancer[J]. J Clin Oncol, 2013, 31(29): 3639-3646.
doi: 10.1200/JCO.2012.48.4659 pmid: 24002501 |
[235] | WELLS S A Jr, ROBINSON B G, GAGEL R F, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase Ⅲ trial[J]. J Clin Oncol, 2012, 30(2): 134-141. |
[236] | LI D P, CHI Y, CHEN X H, et al. Anlotinib in locally advanced or metastatic medullary thyroid carcinoma: a randomized, double-blind phase ⅡB trial[J]. Clin Cancer Res, 2021, 27(13): 3567-3575. |
[237] | KUNZ P L, GRAHAM N T, CATALANO P J, et al. Randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors (ECOG-ACRIN E2211)[J]. J Clin Oncol, 2023, 41(7): 1359-1369. |
[238] | WANG W, ZHANG Y, PENG Y, et al. A ki-67 index to predict treatment response to the capecitabine/temozolomide regimen in neuroendocrine neoplasms: a retrospective multicenter study[J]. Neuroendocrinology, 2021, 111(8): 752-763. |
[239] | CHI Y, SONG L J, LIU W L, et al. S-1/temozolomide versus S-1/temozolomide plus thalidomide in advanced pancreatic and non-pancreatic neuroendocrine tumours (STEM): a randomised, open-label, multicentre phase 2 trial[J]. EClinicalMedicine, 2022, 54: 101667. |
[240] | AL-TOUBAH T, MORSE B, PELLE E, et al. Efficacy of FOLFOX in patients with aggressive pancreatic neuroendocrine tumors after prior capecitabine/temozolomide[J]. Oncologist, 2021, 26(2): 115-119. |
[241] | GIROT P, BAUDIN E, SENELLART H, et al. Oxaliplatin and 5-fluorouracil in advanced well-differentiated digestive neuroendocrine tumors: a multicenter national retrospective study from the French Group of endocrine tumors[J]. Neuroendocrinology, 2022, 112(6): 537-546. |
[242] | LACOMBE C, PERRIER M, HENTIC O, et al. FOLFOX-bevacizumab chemotherapy in patients with metastatic neuroendocrine tumors[J]. J Neuroendocrinol, 2023, 35(1): e13227. |
[243] |
LAMARCA A, ELLIOTT E, BARRIUSO J, et al. Chemotherapy for advanced non-pancreatic well-differentiated neuroendocrine tumours of the gastrointestinal tract, a systematic review and meta-analysis: a lost cause?[J]. Cancer Treat Rev, 2016, 44: 26-41.
doi: 10.1016/j.ctrv.2016.01.005 pmid: 26855376 |
[244] |
SORBYE H, WELIN S, LANGER S W, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study[J]. Ann Oncol, 2013, 24(1): 152-160.
doi: 10.1093/annonc/mds276 pmid: 22967994 |
[245] | APOSTOLIDIS L, DAL BUONO A, MEROLA E, et al. Multicenter analysis of treatment outcomes for systemic therapy in well differentiated grade 3 neuroendocrine tumors (NET G3)[J]. Cancers, 2021, 13(8): 1936. |
[246] |
RAVEROT G, ILIE M D, LASOLLE H, et al. Aggressive pituitary tumours and pituitary carcinomas[J]. Nat Rev Endocrinol, 2021, 17: 671-684.
doi: 10.1038/s41574-021-00550-w pmid: 34493834 |
[247] |
HADOUX J, SCHLUMBERGER M. Chemotherapy and tyrosine-kinase inhibitors for medullary thyroid cancer[J]. Best Pract Res Clin Endocrinol Metab, 2017, 31(3): 335-347.
doi: S1521-690X(17)30037-4 pmid: 28911729 |
[248] |
NIEMEIJER N D, ALBLAS G, VAN HULSTEIJN L T, et al. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis[J]. Clin Endocrinol, 2014, 81(5): 642-651.
doi: 10.1111/cen.12542 pmid: 25041164 |
[249] | AYALA-RAMIREZ M, FENG L, HABRA M A, et al. Clinical benefits of systemic chemotherapy for patients with metastatic pheochromocytomas or sympathetic extra-adrenal paragangliomas[J]. Cancer, 2012, 118(11): 2804-2812. |
[250] | FAIVRE-FINN C, SNEE M, ASHCROFT L, et al. Concurrent once-daily versus twice-daily chemoradiotherapy in patients with limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3, randomised, superiority trial[J]. Lancet Oncol, 2017, 18(8): 1116-1125. |
[251] | SKARLOS D V, SAMANTAS E, BRIASSOULIS E, et al. Randomized comparison of early versus late hyperfractionated thoracic irradiation concurrently with chemotherapy in limited disease small-cell lung cancer: a randomized phase Ⅱ study of the Hellenic Cooperative Oncology Group (HeCOG)[J]. Ann Oncol, 2001, 12(9): 1231-1238. |
[252] | CHENG Y, SPIGEL D R, CHO B C, et al. Durvalumab after chemoradiotherapy in limited-stage small-cell lung cancer[J]. N Engl J Med, 2024 ;391(14):1313-1327. |
[253] | HORN L, MANSFIELD A S, SZCZĘSNA A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer[J]. N Engl J Med, 2018, 379(23): 2220-2229. |
[254] | PAZ-ARES L, DVORKIN M, CHEN Y B, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2019, 394: 1929-1939. |
[255] | CHENG Y, HAN L, WU L, et al. Effect of first-line serplulimab vs placebo added to chemotherapy on survival in patients with extensive-stage small cell lung cancer: the ASTRUM-005 randomized clinical trial[J]. JAMA, 2022, 328(12): 1223-1232. |
[256] |
WANG J, ZHOU C C, YAO W X, et al. Adebrelimab or placebo plus carboplatin and etoposide as first-line treatment for extensive-stage small-cell lung cancer (CAPSTONE-1): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2022, 23(6): 739-747.
doi: 10.1016/S1470-2045(22)00224-8 pmid: 35576956 |
[257] |
EVANS W K, SHEPHERD F A, FELD R, et al. VP-16 and cisplatin as first-line therapy for small-cell lung cancer[J]. J Clin Oncol, 1985, 3(11): 1471-1477.
pmid: 2997406 |
[258] | OKAMOTO H, WATANABE K, NISHIWAKI Y, et al. Phase Ⅱ study of area under the plasma-concentration-versus-time curve-based carboplatin plus standard-dose intravenous etoposide in elderly patients with small-cell lung cancer[J]. J Clin Oncol, 1999, 17(11): 3540-3545. |
[259] | NODA K, NISHIWAKI Y, KAWAHARA M, et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer[J]. N Engl J Med, 2002, 346(2): 85-91. |
[260] | SCHMITTEL A, FISCHER VON WEIKERSTHAL L, SEBASTIAN M, et al. A randomized phase Ⅱ trial of irinotecan plus carboplatin versus etoposide plus carboplatin treatment in patients with extended disease small-cell lung cancer[J]. Ann Oncol, 2006, 17(4): 663-667. |
[261] | CHENG Y, WANG Q M, LI K, et al. Anlotinib vs placebo as third- or further-line treatment for patients with small cell lung cancer: a randomised, double-blind, placebo-controlled Phase 2 study[J]. Br J Cancer, 2021, 125(3): 366-371. |
[262] |
MOERTEL C G, KVOLS L K, O’CONNELL M J, et al. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms[J]. Cancer, 1991, 68(2): 227-232.
doi: 10.1002/1097-0142(19910715)68:2<227::aid-cncr2820680202>3.0.co;2-i pmid: 1712661 |
[263] | ZHANG P P, LI J, LI J, et al. Etoposide and cisplatin versus irinotecan and cisplatin as the first-line therapy for patients with advanced, poorly differentiated gastroenteropancreatic neuroendocrine carcinoma: a randomized phase 2 study[J]. Cancer, 2020, 126(Suppl 9): 2086-2092. |
[264] | CHANTRILL L A, RANSOM D, CHAN D, et al. NABNEC: a randomised phase Ⅱ study of nab-paclitaxel in combination with carboplatin as first line treatment of gastrointestinal neuroendocrine carcinomas (GI-NECs)[J]. J Clin Oncol, 2024, 42(3_suppl): 589-589. |
[265] | FINE R L, GULATI A P, KRANTZ B A, et al. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: the pancreas center at Columbia university experience[J]. Cancer Chemother Pharmacol, 2013, 71(3): 663-670. |
[266] |
OKITA N T, KATO K, TAKAHARI D, et al. Neuroendocrine tumors of the stomach: chemotherapy with cisplatin plus irinotecan is effective for gastric poorly-differentiated neuroendocrine carcinoma[J]. Gastric Cancer, 2011, 14(2): 161-165.
doi: 10.1007/s10120-011-0025-5 pmid: 21327441 |
[267] | BAJETTA E, CATENA L, PROCOPIO G, et al. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours?[J]. Cancer Chemother Pharmacol, 2007, 59(5): 637-642. |
[268] | MCNAMARA M G, SWAIN J, CRAIG Z, et al. NET-02: A randomised, non-comparative, phase Ⅱ trial of nal-IRI/5-FU or docetaxel as second-line therapy in patients with progressive poorly differentiated extra-pulmonary neuroendocrine carcinoma[J]. EClinicalMedicine, 2023, 60: 102015. |
[269] |
LE D T, DURHAM J N, SMITH K N, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413.
doi: 10.1126/science.aan6733 pmid: 28596308 |
[270] |
KLEIN O, KEE D, MARKMAN B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers[J]. Clin Cancer Res, 2020, 26(17): 4454-4459.
doi: 10.1158/1078-0432.CCR-20-0621 pmid: 32532787 |
[271] | MULVEY C, RAJ N P, CHAN J A, et al. Phase Ⅱ study of pembrolizumab-based therapy in previously treated extrapulmonary poorly differentiated neuroendocrine carcinomas: results of part A (pembrolizumab alone)[J]. J Clin Oncol, 2019, 37(4_suppl): 363. |
[272] | FOTTNER C, APOSTOLIDIS L, FERRATA M, et al. A phase Ⅱ, open label, multicenter trial of avelumab in patients with advanced, metastatic high-grade neuroendocrine carcinomas NEC G3 (WHO 2010) progressive after first-line chemotherapy (AVENEC)[J]. J Clin Oncol, 2019, 37(15_suppl): 4103-4103. |
[273] | LU M, ZHANG P, ZHANG Y, et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: a multiple-center phase Ⅰb trial[J]. Clin Cancer Res, 2020, 26(10):2337-2345. |
[274] | YAO J C, STROSBERG J, FAZIO N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms[J]. Endocr Relat Cancer, 2021. |
[275] |
HICKS R J, KWEKKEBOOM D J, KRENNING E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasia: peptide receptor radionuclide therapy with radiolabeled somatostatin analogues[J]. Neuroendocrinology, 2017, 105(3): 295-309.
doi: 10.1159/000475526 pmid: 28402980 |
[276] | CARLSEN E A, FAZIO N, GRANBERG D, et al. Peptide receptor radionuclide therapy in gastroenteropancreatic NEN G3: a multicenter cohort study[J]. Endocr Relat Cancer, 2019, 26(2): 227-239. |
[277] | STROSBERG J R, CAPLIN M E, KUNZ P L, et al. 177Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2021, 22(12): 1752-1763. |
[278] | STROSBERG J, WOLIN E, CHASEN B, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-dotatate in the phase Ⅲ NETTER-1 trial[J]. J Clin Oncol, 2018, 36(25): 2578-2584. |
[279] | OHLENDORF F, WERNER R A, HENKENBERENS C, et al. Predictive and prognostic impact of blood-based inflammatory biomarkers in patients with gastroenteropancreatic neuroendocrine tumors commencing peptide receptor radionuclide therapy[J]. Diagnostics, 2021, 11(3): 504. |
[280] | SUNDLÖV A, GLEISNER K S, TENNVALL J, et al. Phase Ⅱ trial demonstrates the efficacy and safety of individualized, dosimetry-based 177Lu-DOTATATE treatment of NET patients[J]. Eur J Nucl Med Mol Imaging, 2022, 49(11): 3830-3840. |
[281] | BRABANDER T, VAN DER ZWAN W A, TEUNISSEN J J M, et al. Long-term efficacy, survival, and safety of[177Lu-DOTA0, Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors[J]. Clin Cancer Res, 2017, 23(16): 4617-4624. |
[282] |
MAK I Y F, HAYES A R, KHOO B, et al. Peptide receptor radionuclide therapy as a novel treatment for metastatic and invasive phaeochromocytoma and paraganglioma[J]. Neuroendocrinology, 2019, 109(4): 287-298.
doi: 10.1159/000499497 pmid: 30856620 |
[283] | STROSBERG J, MIZUNO N, DOI T, et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase Ⅱ KEYNOTE-158 study[J]. Clin Cancer Res, 2020, 26(9): 2124-2130. |
[284] |
CAPDEVILA J, HERNANDO J, TEULE A, et al. Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin[J]. Nat Commun, 2023, 14: 2973.
doi: 10.1038/s41467-023-38611-5 pmid: 37221181 |
[285] |
BECKER J C, STANG A, DECAPRIO J A, et al. Merkel cell carcinoma[J]. Nat Rev Dis Primers, 2017, 3: 17077.
doi: 10.1038/nrdp.2017.77 pmid: 29072302 |
[286] | KIM S, WUTHRICK E, BLAKAJ D M, et al. LBA42 Combined nivolumab and ipilimumab with or without stereotactic body radiation therapy for advanced Merkel cell carcinoma[J]. Ann Oncol, 2022, 33: S1409-S1410. |
[287] | NGHIEM P T, BHATIA S, LIPSON E J, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma[J]. N Engl J Med, 2016, 374(26): 2542-2552. |
[288] | NGHIEM P, BHATIA S, LIPSON E J, et al. Three-year survival, correlates and salvage therapies in patients receiving first-line pembrolizumab for advanced Merkel cell carcinoma[J]. J Immunother Cancer, 2021, 9(4): e002478. |
[289] | BECKER J C, UGUREL S, LEITER-STOPPKE U, et al. Adjuvant immunotherapy with nivolumab (NIVO) versus observation in completely resected Merkel cell carcinoma (MCC): disease-free survival (DFS) results from ADMEC-O, a randomized, open-label phase Ⅱ trial[J]. Ann Oncol, 2022, 33: S903. |
[290] | SUBBIAH V, HU M I, WIRTH L J, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study[J]. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501. |
[291] |
PAVEL M, O’TOOLE D, COSTA F, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site[J]. Neuroendocrinology, 2016, 103(2): 172-185.
doi: 10.1159/000443167 pmid: 26731013 |
[292] | CARMONA-BAYONAS A, JIMÉNEZ-FONSECA P, LAMARCA Á, et al. Prediction of progression-free survival in patients with advanced, well-differentiated, neuroendocrine tumors being treated with a somatostatin analog: the GETNE-TRASGU study[J]. J Clin Oncol, 2019, 37(28): 2571-2580. |
[293] | CAPLIN M E, PAVEL M, ĆWIKŁA J B, et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study[J]. Endocr Relat Cancer, 2016, 23(3): 191-199. |
[294] |
FIORE F, DEL PRETE M, FRANCO R, et al. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumors[J]. Endocrine, 2014, 47(1): 177-182.
doi: 10.1007/s12020-013-0130-9 pmid: 24385266 |
[295] | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: neuroendocrine and adrenal tumors, V.2.2021[EB/OL]. [2024-11-15]. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp. |
[296] |
GOERING J D, MAHVI D M, NIEDERHUBER J E, et al. Cryoablation and liver resection for noncolorectal liver metastases[J]. Am J Surg, 2002, 183(4): 384-389.
pmid: 11975925 |
[297] |
MOHAN H, NICHOLSON P, WINTER D C, et al. Radiofrequency ablation for neuroendocrine liver metastases: a systematic review[J]. J Vasc Interv Radiol, 2015, 26(7): 935-942.e1.
doi: 10.1016/j.jvir.2014.12.009 pmid: 25840836 |
[298] | AKYILDIZ H Y, MITCHELL J, MILAS M, et al. Laparoscopic radiofrequency thermal ablation of neuroendocrine hepatic metastases: long-term follow-up[J]. Surgery, 2010, 148(6): 1288-1293; discussion1293. |
[299] |
STROSBERG J R, CHEEMA A, KVOLS L K. A review of systemic and liver-directed therapies for metastatic neuroendocrine tumors of the gastroenteropancreatic tract[J]. Cancer Control, 2011, 18(2): 127-137.
pmid: 21451455 |
[300] | PERICLEOUS M, CAPLIN M E, TSOCHATZIS E, et al. Hepatic artery embolization in advanced neuroendocrine tumors: efficacy and long-term outcomes[J]. Asia Pac J Clin Oncol, 2016, 12(1): 61-69. |
[301] | 刘一铭, 连帆, 周翔飞, 等. 肝动脉栓塞术联合长效奥曲肽降低中低级别神经内分泌瘤肝转移负荷的疗效及安全性分析[J]. 中华医学杂志, 2019, 99(15):1142-1146. |
LIU Y M, LIAN F, ZHOU X F, et al. Safety and efficacy of transarterial embolization combined with octreotide LAR on reducing tumor burden for neuroendocrine tumor liver metastasis[J]. Natl Med J China, 2019, 99(15):1142-1146. | |
[302] | 刘海宽, 陈文川, 刘一铭, 等. 肝动脉栓塞术治疗42例低-中级别乏血供型神经内分泌肿瘤肝转移的近期疗效及安全性分析[J]. 中华介入放射学电子杂志, 2020, 8(2): 130-134. |
LIU H K, CHEN W C, LIU Y M, et al. Transarterial embolization in the treatment of 42 patients with low-to-intermediate grade neuroendocrineneoplasm liver metastasis with hypovascular pattern: an analysis of the short-term effcacy and safety[J]. Chin J Interv Radiol Electron Ed, 2020, 8(2): 130-134. | |
[303] | 王于, 陈洁. 胰腺神经内分泌肿瘤复杂肝转移的介入及药物治疗策略[J]. 协和医学杂志, 2020, 11(4): 389-394. |
WANG Y, CHEN J. The Management strategies of interventional therapy and drug therapy of complicated pancreatic neuroendocrine neoplasms with liver metastases[J]. Med J Peking Union Med Coll Hosp, 2020, 11(4): 389-394. | |
[304] | CHEN L, YANG D, YUSUFU Y, et al. Trans arterial embolisation for liver metastasis in patients with welldifferentiated grade 3 gastroenteropancreatic neuroendocrine tumors[J]. J Neuroendocrinol, 2024, 36: 180. |
[305] | LIU Y M, LIU H K, CHEN W C, et al. Prolonged progression-free survival achieved by octreotide LAR plus transarterial embolization in low-to-intermediate grade neuroendocrine tumor liver metastases with high hepatic tumor burden[J]. Cancer Med, 2022, 11(13): 2588-2600. |
[306] |
DEL PRETE M, FIORE F, MODICA R, et al. Hepatic arterial embolization in patients with neuroendocrine tumors[J]. J Exp Clin Cancer Res, 2014, 33: 43.
doi: 10.1186/1756-9966-33-43 pmid: 24887262 |
[307] |
ZENER R, YOON H, ZIV E, et al. Outcomes after transarterial embolization of neuroendocrine tumor liver metastases using spherical particles of different sizes[J]. Cardiovasc Intervent Radiol, 2019, 42(4): 569-576.
doi: 10.1007/s00270-018-02160-y pmid: 30627774 |
[308] | SCHAARSCHMIDT B M, WILDGRUBER M, KLOECKNER R, et al. 90Y radioembolization in the treatment of neuroendocrine neoplasms: results of an international multicenter retrospective study[J]. J Nucl Med, 2022, 63(5): 679-685. |
[309] |
SAXENA A, CHUA T C, BESTER L, et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases[J]. Ann Surg, 2010, 251(5): 910-916.
doi: 10.1097/SLA.0b013e3181d3d24a pmid: 20395859 |
[310] | BHAGAT N, REYES D K, LIN M D, et al. Phase Ⅱ study of chemoembolization with drug-eluting beads in patients with hepatic neuroendocrine metastases: high incidence of biliary injury[J]. Cardiovasc Intervent Radiol, 2013, 36(2): 449-459. |
[311] | TAÏEB D, WANNA G B, AHMAD M, et al. Clinical consensus guideline on the management of phaeochromocytoma and paraganglioma in patients harbouring germline SDHD pathogenic variants[J]. Lancet Diabetes Endocrinol, 2023, 11(5): 345-361. |
[312] |
BEAN M B, LIU Y, JIANG R, et al. Small cell and squamous cell carcinomas of the head and neck: comparing incidence and survival trends based on surveillance, epidemiology, and end results (SEER) data[J]. Oncologist, 2019, 24(12): 1562-1569.
doi: 10.1634/theoncologist.2018-0054 pmid: 31391295 |
[313] |
VAN DER LAAN T P, IEPSMA R, WITJES M J, et al. Meta-analysis of 701 published cases of sinonasal neuroendocrine carcinoma: the importance of differentiation grade in determining treatment strategy[J]. Oral Oncol, 2016, 63: 1-9.
doi: S1368-8375(16)30178-6 pmid: 27938993 |
[314] |
POINTER K B, KO H C, BROWER J V, et al. Small cell carcinoma of the head and neck: an analysis of the National Cancer Database[J]. Oral Oncol, 2017, 69: 92-98.
doi: S1368-8375(17)30100-8 pmid: 28559027 |
[315] |
MOLITCH M E. Diagnosis and treatment of pituitary adenomas: a review[J]. JAMA, 2017, 317(5): 516-524.
doi: 10.1001/jama.2016.19699 pmid: 28170483 |
[316] | DUMOT C, MANTZIARIS G, DAYAWANSA S, et al. Stereotactic radiosurgery for nonfunctioning pituitary tumor: a multicenter study of new pituitary hormone deficiency[J]. Neuro-oncology, 2024, 26(4): 715-723. |
[317] |
KANNER A A, CORN B W, GREENMAN Y. Radiotherapy of nonfunctioning and gonadotroph adenomas[J]. Pituitary, 2009, 12(1): 15-22.
doi: 10.1007/s11102-008-0089-3 pmid: 18286373 |
[318] |
LOEFFLER J S, SHIH H A. Radiation therapy in the management of pituitary adenomas[J]. J Clin Endocrinol Metab, 2011, 96(7): 1992-2003.
doi: 10.1210/jc.2011-0251 pmid: 21525155 |
[319] |
TRITOS N A, MILLER K K. Diagnosis and management of pituitary adenomas: a review[J]. JAMA, 2023, 329(16): 1386-1398.
doi: 10.1001/jama.2023.5444 pmid: 37097352 |
[320] |
BOUCAI L, ZAFEREO M, CABANILLAS M E. Thyroid cancer: a review[J]. JAMA, 2024, 331(5): 425-435.
doi: 10.1001/jama.2023.26348 pmid: 38319329 |
[321] | MANIAKAS A, SULLIVAN A, HU M I, et al. Decreasing utilization for postoperative radiation therapy in locoregionally advanced medullary thyroid cancer[J]. Head Neck, 2024, 46(2): 328-335. |
[322] |
CHUN S G, SIMONE C B 2nd, AMINI A, et al. American Radium Society appropriate use criteria: radiation therapy for limited-stage SCLC 2020[J]. J Thorac Oncol, 2021, 16(1): 66-75.
doi: 10.1016/j.jtho.2020.10.020 pmid: 33166720 |
[323] |
GRØNBERG B H, KILLINGBERG K T, FLØTTEN Ø, et al. High-dose versus standard-dose twice-daily thoracic radiotherapy for patients with limited stage small-cell lung cancer: an open-label, randomised, phase 2 trial[J]. Lancet Oncol, 2021, 22(3): 321-331.
doi: 10.1016/S1470-2045(20)30742-7 pmid: 33662285 |
[324] |
MALIGNANCIES: E P T, HIGGINS K A, SIMONE C B 2nd, et al. American Radium Society appropriate use criteria on radiation therapy for extensive-stage SCLC[J]. J Thorac Oncol, 2021, 16(1): 54-65.
doi: 10.1016/j.jtho.2020.09.013 pmid: 33011389 |
[325] | MAY M S, KINSLOW C J, ADAMS C, et al. Outcomes for localized treatment of large cell neuroendocrine carcinoma of the lung in the United States[J]. Transl Lung Cancer Res, 2021, 10(1): 71-79. |
[326] |
WEGNER R E, ABEL S, HASAN S, et al. The role of adjuvant therapy for atypical bronchopulmonary carcinoids[J]. Lung Cancer, 2019, 131: 90-94.
doi: S0169-5002(19)30378-2 pmid: 31027704 |
[327] | UPRETY D, HALFDANARSON T R, MOLINA J R, et al. Pulmonary neuroendocrine tumors: adjuvant and systemic treatments[J]. Curr Treat Options Oncol, 2020, 21(11): 86. |
[328] |
ZHAO Y, GU H Y, FAN L M, et al. Comparison of clinical features and survival between thymic carcinoma and thymic carcinoid patients[J]. Eur J Cardiothorac Surg, 2017, 52(1): 33-38.
doi: 10.1093/ejcts/ezx037 pmid: 28419205 |
[329] | CATTRINI C, CERBONE L, RUBAGOTTI A, et al. Prognostic variables in patients with non-metastatic small-cell neuroendocrine carcinoma of the bladder: a population-based study[J]. Clin Genitourin Cancer, 2019, 17(4): e724-e732. |
[330] | LIM J H, SUNDAR S. Prognosis of early stage small cell bladder cancer is not always dismal[J]. ESMO Open, 2019, 4(6): e000559. |
[331] |
NIU Q, LU Y Y, XU S G, et al. Clinicopathological characteristics and survival outcomes of bladder neuroendocrine carcinomas: a population-based study[J]. Cancer Manag Res, 2018, 10: 4479-4489.
doi: 10.2147/CMAR.S175286 pmid: 30349380 |
[332] | TEMPFER C B, TISCHOFF I, DOGAN A, et al. Neuroendocrine carcinoma of the cervix: a systematic review of the literature[J]. BMC Cancer, 2018, 18(1): 530. |
[333] |
PANG L, YANG H, NING Y E, et al. Retrospective analysis of clinicopathological features and prognosis of gynecological small-cell carcinoma[J]. Cancer Manag Res, 2021, 13: 4529-4540.
doi: 10.2147/CMAR.S314686 pmid: 34135630 |
[334] | DONG M L, GU X B, MA T R, et al. The role of radiotherapy in neuroendocrine cervical cancer: SEER-based study[J]. Sci Prog, 2021, 104(2): 368504211009336. |
[335] | LIN L M, LIN Q, LIU J, et al. Prognostic factors and treatment comparison in small cell neuroendocrine carcinoma of the uterine cervix based on population analyses[J]. Cancer Med, 2020, 9(18): 6524-6532. |
[336] | BHATIA S, STORER B E, IYER J G, et al. Adjuvant radiation therapy and chemotherapy in merkel cell carcinoma: survival analyses of 6 908 cases from the national cancer data base[J]. J Natl Cancer Inst, 2016, 108(9): djw042. |
[337] |
ANDRUSKA N, FISCHER-VALUCK B W, MAHAPATRA L, et al. Association between surgical margins larger than 1 cm and overall survival in patients with merkel cell carcinoma[J]. JAMA Dermatol, 2021, 157(5): 540-548.
doi: 10.1001/jamadermatol.2021.0247 pmid: 33760021 |
[338] |
ANDRUSKA N, MAHAPATRA L, BRENNEMAN R J, et al. Regional lymph node irradiation in locally advanced Merkel cell carcinoma reduces regional and distant relapse and improves disease-specific survival[J]. Radiother Oncol, 2021, 155: 246-253.
doi: 10.1016/j.radonc.2020.11.003 pmid: 33212121 |
[339] |
JANSEN T T G, TIMMERS H J L M, MARRES H A M, et al. Results of a systematic literature review of treatment modalities for jugulotympanic paraganglioma, stratified per Fisch class[J]. Clin Otolaryngol, 2018, 43(2): 652-661.
doi: 10.1111/coa.13046 pmid: 29222838 |
[340] |
GIGLIOTTI M J, HASAN S, LIANG Y, et al. A 10-year experience of linear accelerator-based stereotactic radiosurgery/radiotherapy (SRS/SRT) for paraganglioma: a single institution experience and review of the literature[J]. J Radiosurg SBRT, 2018, 5(3): 183-190.
pmid: 29988317 |
[341] | YAZICI G, KAHVECIOGLU A, YUCE SARI S, et al. Stereotactic radiotherapy for head and neck paragangliomas: how long should we wait for treatment response?[J]. Radiother Oncol, 2024, 195: 110232. |
[342] | KOHLENBERG J, WELCH B, HAMIDI O, et al. Efficacy and safety of ablative therapy in the treatment of patients with metastatic pheochromocytoma and paraganglioma[J]. Cancers, 2019, 11(2): 195. |
[343] | 窦豆, 邱旭东, 陈莹莹, 等. “疏木六君子汤”加减治疗1型胃神经内分泌肿瘤的临床观察[J]. 临床肿瘤学杂志, 2019, 24(9): 824-827. |
DOU D, QIU X D, CHEN Y Y, et al. The clinical observation of modified Shumu Liujunzi decoction for type 1 gastric neuroendocrine neoplasm[J]. Chin Clin Oncol, 2019, 24(9): 824-827. | |
[344] | CHEN Y Y, HAN D, ZHU J Q, et al. A prospective and retrospective clinical controlled observation of Chinese herbal decoction (SMLJ01) for type 1 gastric neuroendocrine tumors[J]. Integr Cancer Ther, 2020, 19: 1534735420958488. |
[345] | 陈儒骜, 陈琦双, 程梓轩, 等. 芪贞抑瘤方联合生长抑素类似物治疗晚期胰腺神经内分泌肿瘤的回顾性队列研究[J]. 中日友好医院学报, 2024, 38(3):139-143. |
CHEN R A, CHEN Q S, CHENG Z X, et al. Retrospective cohort study of Qi Zhen Yi Liu Formula and somatostatin analogues in advanced pan-creatic neuroendocrine tumors[J]. J China-Japan Friendship Hosp, 2024, 38(3):139-143. | |
[346] | 李梅, 窦豆, 罗杰, 等. 中药联合生长抑素类似物治疗晚期胃肠胰腺神经内分泌肿瘤的疗效分析[J]. 临床肿瘤学杂志, 2017, 22(3): 238-242. |
LI M, DOU D, LUO J, et al. Clinical observation on traditional Chinese medicine in combination with somatostatin analogues for advanced gastroenteropancreatic neuroendocrine tumors[J]. Chin Clin Oncol, 2017, 22(3): 238-242. | |
[347] | 陈琦双, 陈儒骜, 余芙欢, 等. 中西医结合治疗局限期胃神经内分泌癌的回顾研究[J]. 中日友好医院学报, 2024, 38(3):158-161. |
CHEN Q S, CHEN R A, YU F H, et al. A retrospective study on the treatment of localized gastric neuroendocrine carcinoma by integrating traditional Chinese and Western medicine[J]. J China-Japan Friendship Hosp, 2024, 38(3):158-161. | |
[348] |
LAMB B W, SEVDALIS N, VINCENT C, et al. Development and evaluation of a checklist to support decision making in cancer multidisciplinary team meetings: MDT-QuIC[J]. Ann Surg Oncol, 2012, 19(6): 1759-1765.
doi: 10.1245/s10434-011-2187-0 pmid: 22207050 |
[349] |
TAMAGNO G, SHEAHAN K, SKEHAN S J, et al. Initial impact of a systematic multidisciplinary approach on the management of patients with gastroenteropancreatic neuroendocrine tumor[J]. Endocrine, 2013, 44(2): 504-509.
doi: 10.1007/s12020-013-9910-5 pmid: 23471696 |
[350] | PIETERMAN C R C, VALK G D. Update on the clinical management of multiple endocrine neoplasia type 1[J]. Clin Endocrinol, 2022, 97(4): 409-423. |
[351] | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: neuroendocrine and adrenal tumors, V.1.2024[EB/OL]. [2024-11-15]. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp. |
[352] | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: kidney cancer, V.1.2025[EB/OL]. [2024-11-15]. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp. |
[1] | 赵翊含, 李若尘, 林岩松. 甲状腺癌骨转移的诊治现状及展望[J]. 中国癌症杂志, 2025, 35(1): 12-20. |
[2] | 耿倩倩, 杨爱民. 碘难治性分化型甲状腺癌的治疗进展及展望[J]. 中国癌症杂志, 2025, 35(1): 30-39. |
[3] | 李汝平, 杨辉. 放射性碘难治性甲状腺癌的临床试验现状及未来展望[J]. 中国癌症杂志, 2025, 35(1): 40-48. |
[4] | 王任飞, 卢改霞. 核医学分子影像在放射性碘难治性分化型甲状腺癌评估中的独特价值与争议[J]. 中国癌症杂志, 2025, 35(1): 49-57. |
[5] | 林秋玉, 王宇鑫, 林承赫. 靶向治疗与免疫治疗在放射性碘难治性分化型甲状腺癌中的应用与前景[J]. 中国癌症杂志, 2025, 35(1): 58-67. |
[6] | 姜晓彤, 刘锦川, 张迎强, 王瞳, 郭宁, 孙郁青, 石聪, 颜兵, 林岩松. 诊断性131I全身显像在分化型甲状腺癌131I治疗决策中的作用[J]. 中国癌症杂志, 2025, 35(1): 77-84. |
[7] | 冯欣滢, 王冰, 刘培峰. 腹膜转移癌腹腔化疗的创新与挑战[J]. 中国癌症杂志, 2024, 34(9): 827-837. |
[8] | 伍雯, 张若昕, 翁俊勇, 马延磊, 蔡国响, 李心翔, 杨永志. 探索阳性淋巴结比率在ypⅢ期结直肠癌患者中的预后价值及预测模型的建立[J]. 中国癌症杂志, 2024, 34(9): 873-880. |
[9] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[10] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[11] | 中国抗癌协会肿瘤整体评估专业委员会, 福建省抗癌协会癌痛专业委员会. 奥沙利铂超敏反应全程管理中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(8): 785-805. |
[12] | 刘帅, 张凯, 张晓青, 栾巍. 派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究[J]. 中国癌症杂志, 2024, 34(7): 659-668. |
[13] | 廖梓伊, 彭杨, 曾蓓蕾, 马影颖, 曾丽, 甘科论, 马代远. 局部晚期食管鳞状细胞癌患者新辅助免疫治疗联合化疗后行根治性手术的术后病理学缓解程度及影响因素分析[J]. 中国癌症杂志, 2024, 34(7): 669-679. |
[14] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[15] | 黄思捷, 康勋, 李文斌. 鞘内注射治疗实体瘤脑膜转移的临床研究进展[J]. 中国癌症杂志, 2024, 34(7): 695-701. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn