[1] |
PRIOLA A M, PRIOLA S M, CARDINALE L, et al. The anterior mediastinum: diseases[J]. Radiol Med, 2006, 111(3): 312-342.
doi: 10.1007/s11547-006-0032-5
pmid: 16683081
|
[2] |
MARX A, CHAN J K, COINDRE J M, et al. The 2015 World Health Organization classification of tumors of the thymus: continuity and changes[J]. J Thorac Oncol, 2015, 10(10): 1383-1395.
doi: 10.1097/JTO.0000000000000654
pmid: 26295375
|
[3] |
CHEN G, MARX A, CHEN W H, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China[J]. Cancer, 2002, 95(2): 420-429.
doi: 10.1002/cncr.10665
pmid: 12124843
|
[4] |
GIRARD N, RUFFINI E, MARX A, et al. ESMO Guidelines Committee. Thymic epithelial tumours: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2015, 26(Suppl 5): v40-55.
|
[5] |
SCORSETTI M, LEO F, TRAMA A, D'ANGELILLO R, et al. Thymoma and thymic carcinomas[J]. Crit Rev Oncol Hematol, 2016, 99: 332-350.
doi: 10.1016/j.critrevonc.2016.01.012
pmid: 26818050
|
[6] |
VENUTA F, RENDINA E A, LONGO F, et al. Long-term outcome after multimodality treatment for stage Ⅲ thymic tumors[J]. Ann Thorac Surg, 2003, 76(6): 1866-1872; discussion1872.
|
[7] |
VENUTA F, RENDINA E A, PESCARMONA E O, et al. Multimodality treatment of thymoma: a prospective study[J]. Ann Thorac Surg, 1997, 64(6): 1585-1591; discussion: 1591-1592.
|
[8] |
OTANI Y, YOSHIDA I, ISHIKAWA S, et al. Neoadjuvant intra-arterial infusion chemotherapy for invasive thymoma[J]. Oncol Rep, 1997, 4(1): 23-25.
doi: 10.3892/or.4.1.23
pmid: 21590005
|
[9] |
JEONG Y J, LEE K S, KIM J, et al. Does CT of thymic epithelial tumors enable us to differentiate histologic types and predict prognosis?[J]. AJR Am J Roentgenol, 2004, 183(2): 283-289.
|
[10] |
LIU J, YIN P, WANG S C, et al. CT-based radiomics signatures for predicting the risk categorization of thymic epithelial tumors[J]. Front Oncol, 2021, 11: 628534.
|
[11] |
FEDOROV A, BEICHEL R, KALPATHY-CRAMER J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9): 1323-1341.
doi: 10.1016/j.mri.2012.05.001
pmid: 22770690
|
[12] |
FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[J]. J Statistical Software, 33(1): 1-22.
|
[13] |
BISCHL B, LANG M, KOTTHOFF L, et al. MLR: machine learning in R[J]. J Machine Learning Res, 2016, 17(1): 5938-5942.
|
[14] |
ABDEL RAZEK A A, KHAIRY M, NADA N. Diffusion-weighted MR imaging in thymic epithelial tumors: correlation with world health organization classification and clinical staging[J]. Radiology, 2014, 273(1): 268-275.
doi: 10.1148/radiol.14131643
pmid: 24877982
|
[15] |
XIAO G, HU Y C, REN J L, et al. MR imaging of thymomas: a combined radiomics nomogram to predict histologic types[J]. Eur Radiol, 2021, 31(1): 447-457.
|
[16] |
WANG X H, SUN W, LIANG H Y, et al. Radiomics signatures of computed tomography imaging for predicting risk categorization and clinical stage of thymomas[J]. Biomed Res Int, 2019, 2019: 3616852.
|
[17] |
XIAO G, RONG W C, HU Y C, et al. MRI radiomics analysis for predicting the pathologic classification and TNM staging of thymic epithelial tumors: a pilot studyB[J]. AJR Am J Roentgenol, 2020, 214(2): 328-340.
|
[18] |
DONG W T, XIONG S T, LEI P G, et al. Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization[J]. Front Oncol, 2022, 12: 944005.
|
[19] |
YU C, LI T, YANG X, ZHANG R, et al. Contrast-enhanced CT-based radiomics model for differentiating risk subgroups of thymic epithelial tumors[J]. BMC Med Imaging, 2022, 22(1): 37.
|
[20] |
LIU W, WANG W, ZHANG H Y, et al. Development and validation of multi-omics thymoma risk classification model based on transfer learning[J]. J Digit Imaging, 2023, 36(5): 2015-2024.
doi: 10.1007/s10278-023-00855-4
pmid: 37268842
|
[21] |
SHANG L, WANG F, GAO Y, et al. Machine-learning classifiers based on non-enhanced computed tomography radiomics to differentiate anterior mediastinal cysts from thymomas and low-risk from high-risk thymomas: a multi-center study[J]. Front Oncol, 2022, 12: 1043163.
|
[22] |
KAYI CANGIR A, ORHAN K, KAHYA Y, et al. CT imaging-based machine learning model: a potential modality for predicting low-risk and high-risk groups of thymoma: "impact of surgical modality choice"[J]. World J Surg Oncol, 2021, 19(1): 147.
|
[23] |
OZKAN E, ORHAN K, SOYDAL C, et al. Combined clinical and specific positron emission tomography/computed tomography-based radiomic features and machine-learning model in prediction of thymoma risk groups[J]. Nucl Med Commun, 2022, 43(5): 529-539.
doi: 10.1097/MNM.0000000000001547
pmid: 35234213
|
[24] |
RAJAMOHAN N, GOYAL A, KANDASAMY D, et al. CT texture analysis in evaluation of thymic tumors and thymic hyperplasia: correlation with the international thymic malignancy interest group (ITMIG) stage and WHO grade[J]. Br J Radiol, 2021, 94(1128): 20210583.
|
[25] |
IANNARELLI A, SACCONI B, TOMEI F, et al. Analysis of CT features and quantitative texture analysis in patients with thymic tumors: correlation with grading and staging[J]. Radiol Med, 2018, 123(5): 345-350.
doi: 10.1007/s11547-017-0845-4
pmid: 29307077
|
[26] |
FENG X L, WANG S Z, CHEN H H, et al. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: a large cohort retrospective study[J]. Lung Cancer, 2022, 166: 150-160.
|
[27] |
NAKAJO M, TAKEDA A, KATSUKI A, et al. The efficacy of 18F-FDG-PET-based radiomic and deep-learning features using a machine-learning approach to predict the pathological risk subtypes of thymic epithelial tumors[J]. Br J Radiol, 2022, 95(1134): 20211050.
|
[28] |
MAHMOUDI S, GRUENEWALD L D, EICHLER K, et al. Multiparametric evaluation of radiomics features and dual-energy CT iodine maps for discrimination and outcome prediction of thymic masses[J]. Acad Radiol, 2023, 30(12): 3010-3021.
doi: 10.1016/j.acra.2023.03.034
pmid: 37105804
|