中国癌症杂志 ›› 2024, Vol. 34 ›› Issue (2): 210-219.doi: 10.19401/j.cnki.1007-3639.2024.02.009
吴洪基1(), 王海霞2,3,4, 汪玲2,3,4, 罗小刚1, 邹冬玲2,3,4(
)
收稿日期:
2023-07-24
修回日期:
2023-10-03
出版日期:
2024-02-29
发布日期:
2024-03-14
通信作者:
邹冬玲
作者简介:
吴洪基(ORCID:0009-0007-4405-7411),硕士研究生在读。
基金资助:
WU Hongji1(), WANG Haixia2,3,4, WANG Ling2,3,4, LUO Xiaogang1, ZOU Dongling2,3,4(
)
Received:
2023-07-24
Revised:
2023-10-03
Published:
2024-02-29
Online:
2024-03-14
Contact:
ZOU Dongling
文章分享
摘要:
类器官是一种优异的肿瘤和干细胞研究模型,对其生长或药筛等过程的各种类型数据进行分析,有助于提升对类器官本身以及所代表疾病的了解。但人工观察和筛选类器官以及使用传统统计学方法在处理类器官数据时,存在分析准确度与效率低、难度系数大、人工成本高以及带有一定主观性等问题。而人工智能在很多生物学和医学研究领域已被证明会产生卓越效果。将人工智能引入类器官研究,有助于提升研究的客观性、准确性和速度,从而使类器官能更好地实现疾病建模、药物筛选、个性化医疗等。首先,类器官图像数据的人工智能分析取得了显著进展。结合深度学习的图像分析能够更精准地捕捉类器官的微观结构和变化,提高对类器官形态和生长的自动识别能力,达到较高的准确度,节约研究时间与成本。其次,对于类器官的组学数据,人工智能技术的引入同样取得了重要突破:可提高数据的处理效率以及发现潜在的基因表达模式,为细胞发育和疾病机制的解析提供新的工具。再次,类器官其他类型的数据如电信号和光谱等通过人工智能技术可实现对类器官类型和状态客观的分类,为类器官的全面表征进行了有益的尝试。而在类器官重要应用领域—药物筛选方面,人工智能可为过程监测和结果预测提供强有力的支持。通过高内涵显微镜图像和深度学习模型,研究者们能够实时监测类器官对药物的响应,实现了对药物作用的非侵入性检测,使药物筛选更加精准和高效。然而,尽管人工智能在类器官研究中取得了显著成果,仍然存在一系列挑战。数据获取的难度、样本质量和样本量的不足、模型解释性的问题等制约了其广泛应用。为了克服这些问题,未来的研究需要致力于提高数据的一致性,增强模型解释性,并探索多模态数据融合的方法,以更全面、可靠地应用人工智能于类器官研究中。因此本文认为人工智能技术的引入为类器官研究带来了前所未有的机遇,也取得了明显的研究进展。然而,我们仍然需要跨学科的研究与合作,共同应对挑战,推动人工智能在类器官研究中的更深层次应用。未来,人工智能有望在类器官研究中发挥更大的作用,加速其向临床转化和精准治疗的应用进程。
中图分类号:
吴洪基, 王海霞, 汪玲, 罗小刚, 邹冬玲. 人工智能在类器官研究中的应用进展与挑战[J]. 中国癌症杂志, 2024, 34(2): 210-219.
WU Hongji, WANG Haixia, WANG Ling, LUO Xiaogang, ZOU Dongling. Application progress and challenges of artificial intelligence in organoid research[J]. China Oncology, 2024, 34(2): 210-219.
[1] |
SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265.
doi: 10.1038/nature07935 |
[2] |
中国抗癌协会肿瘤多学科诊疗专业委员会, 中国抗癌协会肿瘤内分泌专业委员会. 肿瘤类器官诊治平台的质量控制标准中国专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(7): 657-668.
doi: 10.19401/j.cnki.1007-3639.2022.07.010 |
The Society of Cancer Multidisciplinary Diagnosis and Treatment, China Anti-Cancer Association, the Society of Cancer Endocrinology, China Anti-Cancer Association. Chinese experts consensus on quality control standards for tumor organoids diagnosis and treatment platform (2022 version)[J]. China Oncol, 2022, 32(7): 657-668. | |
[3] |
VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691 |
[4] |
LI X D, FRANCIES H E, SECRIER M, et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics[J]. Nat Commun, 2018, 9(1): 2983.
doi: 10.1038/s41467-018-05190-9 pmid: 30061675 |
[5] |
王若彤, 王欣, 沈波. 类器官在肿瘤转化医学中的应用和进展[J]. 中国癌症杂志, 2022, 32(11): 1105-1114.
doi: 10.19401/j.cnki.1007-3639.2022.11.009 |
WANG R T, WANG X, SHEN B. Application and progress of organoids in tumor translational medicine[J]. China Oncol, 2022, 32(11): 1105-1114. | |
[6] |
GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187.
doi: S0092-8674(14)01047-2 pmid: 25201530 |
[7] |
BOJ S F, HWANG C I, BAKER L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338.
doi: 10.1016/j.cell.2014.12.021 |
[8] |
HILL S J, DECKER B, ROBERTS E A, et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids[J]. Cancer Discov, 2018, 8(11): 1404-1421.
doi: 10.1158/2159-8290.CD-18-0474 pmid: 30213835 |
[9] |
SMITH R C, TABAR V. Constructing and deconstructing cancers using human pluripotent stem cells and organoids[J]. Cell Stem Cell, 2019, 24(1): 12-24.
doi: S1934-5909(18)30548-4 pmid: 30581078 |
[10] |
芦瑜, 席雨梦, 何晓明, 等. 共培养策略在类器官研究中的应用进展[J]. 中国癌症杂志, 2023, 33(3): 293-302.
doi: 10.19401/j.cnki.1007-3639.2023.03.014 |
LU Y, XI Y M, HE X M, et al. Advances in the application of co-culture strategies in organoids[J]. China Oncol, 2023, 33(3): 293-302. | |
[11] | 马可鑫, 陈晓芳, 李玥, 等. 肿瘤类器官的应用及展望[J]. 中国肿瘤, 2022, 31(4): 284-291. |
MA K X, CHEN X F, LI Y, et al. Application and prospect of tumor organoids[J]. China Cancer, 2022, 31(4): 284-291. | |
[12] | TOSHNIWAL D, GOEL B, SHARMA H. Multistage classification for cardiovascular disease risk prediction[C]//KUMAR N, BHATNAGAR V. International Conference on Big Data Analytics. Cham: Springer, 2015: 258-266. |
[13] |
MANI S, CHEN Y K, ELASY T, et al. Type 2 diabetes risk forecasting from EMR data using machine learning[J]. AMIA Annu Symp Proc, 2012, 2012: 606-615.
pmid: 23304333 |
[14] | BEHROOZI M, SAMI A. A multiple-classifier framework for Parkinson’s disease detection based on various vocal tests[J]. Int J Telemed Appl, 2016, 2016: 6837498. |
[15] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[16] |
ZHAO X M, WU Y H, SONG G D, et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Med Image Anal, 2018, 43: 98-111.
doi: S1361-8415(17)30141-X pmid: 29040911 |
[17] |
ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542: 115-118.
doi: 10.1038/nature21056 |
[18] |
CHOI E, SCHUETZ A, STEWART W F, et al. Using recurrent neural network models for early detection of heart failure onset[J]. J Am Med Inform Assoc, 2017, 24(2): 361-370.
doi: 10.1093/jamia/ocw112 pmid: 27521897 |
[19] | DEVLIN J, CHANG M W, LEE K, et al. Pre-training of deep bidirectional transformers for language understanding[J]. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Naacl Hlt 2019), Vol 1, 2019: 4171-86. |
[20] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted Windows[C]//. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 9992-10002. |
[21] |
LIAN J, DENG J J, HUI E S, et al. Early stage NSCLS patients' prognostic prediction with multi-information using transformer and graph neural network model[J]. Elife, 2022, 11: e80547.
doi: 10.7554/eLife.80547 |
[22] |
NIE D, TRULLO R, LIAN J, et al. Medical image synthesis with context-aware generative adversarial networks[J]. Med Image Comput Comput Assist Interv, 2017, 10435: 417-425.
doi: 10.1007/978-3-319-66179-7_48 pmid: 30009283 |
[23] | ZHU Y P, ZHOU Z C, LIAO G J, et al. Csrgan: medical image super-resolution using a generative adversarial network[C]//. 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops). Iowa City, IA, USA. IEEE, 2020: 1-4. |
[24] | BANSAL M A, SHARMA D R, KATHURIA D M. A systematic review on data scarcity problem in deep learning: solution and applications[J]. ACM Comput Surv, 54(10s): 208. |
[25] |
GE Y, GUO Y T, DAS S, et al. Few-shot learning for medical text: a review of advances, trends, and opportunities[J]. J Biomed Inform, 2023, 144: 104458.
doi: 10.1016/j.jbi.2023.104458 |
[26] | GUO H X, LI Y J, SHANG J, et al. Learning from class-imbalanced data: review of methods and applications[J]. Expert Syst Appl, 2016, 73(2/3). |
[27] | MCALEER S, FAST A, XUE Y T, et al. Deep learning-assisted multiphoton microscopy to reduce light exposure and expedite imaging in tissues with high and low light sensitivity[J]. Transl Vis Sci Technol, 2021, 10(12): 30. |
[28] |
YANG F S, PHAM T A, BRANDENBERG N, et al. Robust phase unwrapping via deep image prior for quantitative phase imaging[J]. IEEE Trans Image Process, 2021, 30: 7025-7037.
doi: 10.1109/TIP.2021.3099956 |
[29] |
KASSIS T, HERNANDEZ-GORDILLO V, LANGER R, et al. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks[J]. Sci Rep, 2019, 9(1): 12479.
doi: 10.1038/s41598-019-48874-y pmid: 31462669 |
[30] |
BAO D, WANG L, ZHOU X F, et al. Automated detection and growth tracking of 3D bio-printed organoid clusters using optical coherence tomography with deep convolutional neural networks[J]. Front Bioeng Biotechnol, 2023, 11: 1133090.
doi: 10.3389/fbioe.2023.1133090 |
[31] |
WINKELMAIER G, PARVIN B. An enhanced loss function simplifies the deep learning model for characterizing the 3D organoid models[J]. Bioinformatics, 2021, 37(18): 3084-3085.
doi: 10.1093/bioinformatics/btab120 pmid: 33620423 |
[32] |
SUN A X, HAYAT H, LIU S H, et al. 3D in vivo magnetic particle imaging of human stem cell-derived islet organoid transplantation using a machine learning algorithm[J]. Front Cell Dev Biol, 2021, 9: 704483.
doi: 10.3389/fcell.2021.704483 |
[33] | GRITTI N, LIM J L, ANLAŞ K, et al. MOrgAna: accessible quantitative analysis of organoids with machine learning[J]. Development, 2021, 148(18): dev199611. |
[34] |
ABDUL L, XU J, SOTRA A, et al. D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images[J]. Lab Chip, 2022, 22(21): 4118-4128.
doi: 10.1039/d2lc00596d pmid: 36200406 |
[35] |
OKAMOTO T, NATSUME Y, DOI M, et al. Integration of human inspection and artificial intelligence-based morphological typing of patient-derived organoids reveals interpatient heterogeneity of colorectal cancer[J]. Cancer Sci, 2022, 113(8): 2693-2703.
doi: 10.1111/cas.v113.8 |
[36] |
KEGELES E, NAUMOV A, KARPULEVICH E A, et al. Convolutional neural networks can predict retinal differentiation in retinal organoids[J]. Front Cell Neurosci, 2020, 14: 171.
doi: 10.3389/fncel.2020.00171 pmid: 32719585 |
[37] |
MERGENTHALER P, HARIHARAN S, PEMBERTON J M, et al. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning[J]. PLoS Comput Biol, 2021, 17(2): e1008630.
doi: 10.1371/journal.pcbi.1008630 |
[38] |
RIOS A C, CLEVERS H. Imaging organoids: a bright future ahead[J]. Nat Methods, 2018, 15(1): 24-26.
doi: 10.1038/nmeth.4537 pmid: 29298292 |
[39] |
HRADECKÁ L, WIESNER D, SUMBAL J, et al. Segmentation and tracking of mammary epithelial organoids in brightfield microscopy[J]. IEEE Trans Med Imaging, 2023, 42(1): 281-290.
doi: 10.1109/TMI.2022.3210714 |
[40] |
BIAN X S, LI G, WANG C, et al. A deep learning model for detection and tracking in high-throughput images of organoid[J]. Comput Biol Med, 2021, 134: 104490.
doi: 10.1016/j.compbiomed.2021.104490 |
[41] |
KOK R N U, HEBERT L, HUELSZ-PRINCE G, et al. OrganoidTracker: efficient cell tracking using machine learning and manual error correction[J]. PLoS One, 2020, 15(10): e0240802.
doi: 10.1371/journal.pone.0240802 |
[42] |
BALLWEG R, ENGEVIK K A, MONTROSE M H, et al. Extracting insights from temporal data by integrating dynamic modeling and machine learning[J]. Front Physiol, 2020, 11: 1012.
doi: 10.3389/fphys.2020.01012 pmid: 32903488 |
[43] |
LIBBY A R G, BRIERS D, HAGHIGHI I, et al. Automated design of pluripotent stem cell self-organization[J]. Cell Syst, 2019, 9(5): 483-495.e10.
doi: S2405-4712(19)30384-9 pmid: 31759947 |
[44] | CHEN K Y, SRINIVASAN T, LIN C, et al. Single-cell transcriptomics reveals heterogeneity and drug response of human colorectal cancer organoids[C]//. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, HI, USA. IEEE, 2018: 2378-2381. |
[45] |
PENG D, GLEYZER R, TAI W H, et al. Evaluating the transcriptional fidelity of cancer models[J]. Genome Med, 2021, 13(1): 73.
doi: 10.1186/s13073-021-00888-w pmid: 33926541 |
[46] |
FENG W, SCHRIEVER H, JIANG S, et al. Computational profiling of hiPSC-derived heart organoids reveals chamber defects associated with NKX2-5 deficiency[J]. Commun Biol, 2022, 5(1): 399.
doi: 10.1038/s42003-022-03346-4 pmid: 35488063 |
[47] | HE C F, KALAFUT N C, SANDOVAL S O, et al. BOMA, a machine-learning framework for comparative gene expression analysis across brains and organoids[J]. Cell Rep Methods, 2023, 3(2): 100409. |
[48] |
DEVALL M, DAMPIER C H, EATON S, et al. Novel insights into the molecular mechanisms underlying risk of colorectal cancer from smoking and red/processed meat carcinogens by modeling exposure in normal colon organoids[J]. Oncotarget, 2021, 12(19): 1863-1877.
doi: 10.18632/oncotarget.28058 pmid: 34548904 |
[49] |
KIM I S, WU J Y, RAHME G J, et al. Parallel single-cell RNA-seq and genetic recording reveals lineage decisions in developing embryoid bodies[J]. Cell Rep, 2020, 33(1): 108222.
doi: 10.1016/j.celrep.2020.108222 |
[50] | HASIB M, LYBRAND Z, ESTEVEZ V N, et al. Charactering hESCs organoids from electrical signals with machine learning[C]//. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Chicago, IL, USA. IEEE, 2019: 1-4. |
[51] |
TUBBESING K, MOSKWA N, KHOO T C, et al. Raman microspectroscopy fingerprinting of organoid differentiation state[J]. Cell Mol Biol Lett, 2022, 27(1): 53.
doi: 10.1186/s11658-022-00347-3 pmid: 35764935 |
[52] |
BECKER L, FISCHER F, FLECK J L, et al. Data-driven identification of biomarkers for in situ monitoring of drug treatment in bladder cancer organoids[J]. Int J Mol Sci, 2022, 23(13): 6956.
doi: 10.3390/ijms23136956 |
[53] |
SPILLER E R, UNG N, KIM S, et al. Imaging-based machine learning analysis of patient-derived tumor organoid drug response[J]. Front Oncol, 2021, 11: 771173.
doi: 10.3389/fonc.2021.771173 |
[54] |
LARSEN B M, KANNAN M, LANGER L F, et al. A pan-cancer organoid platform for precision medicine[J]. Cell Rep, 2021, 36(4): 109429.
doi: 10.1016/j.celrep.2021.109429 |
[55] |
KONG J, LEE H, KIM D, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients[J]. Nat Commun, 2020, 11(1): 5485.
doi: 10.1038/s41467-020-19313-8 pmid: 33127883 |
[56] |
PARK M, KWON J, KONG J, et al. A patient-derived organoid-based radiosensitivity model for the prediction of radiation responses in patients with rectal cancer[J]. Cancers, 2021, 13(15): 3760.
doi: 10.3390/cancers13153760 |
[57] |
ESMAIL S, DANTER W R. NEUBOrg: Artificially induced pluripotent stem cell-derived brain organoid to model and study genetics of Alzheimer’s disease progression[J]. Front Aging Neurosci, 2021, 13: 643889.
doi: 10.3389/fnagi.2021.643889 |
[58] |
ESMAIL S, DANTER W R. Artificially induced pluripotent stem cell-derived whole-brain organoid for modelling the pathophysiology of metachromatic leukodystrophy and drug repurposing[J]. Biomedicines, 2021, 9(4): 440.
doi: 10.3390/biomedicines9040440 |
[59] |
BAI L, WU Y, LI G F, et al. AI-enabled organoids: construction, analysis, and application[J]. Bioact Mater, 2024, 31: 525-548.
doi: 10.1016/j.bioactmat.2023.09.005 pmid: 37746662 |
[1] | 谭洪, 林圣庚, 熊毅. 人工智能赋能癌症协同药物组合预测的现状与挑战[J]. 中国癌症杂志, 2024, 34(9): 807-813. |
[2] | 肖毅, 吴名, 姚刚. 肿瘤类器官研究现状与展望[J]. 中国癌症杂志, 2024, 34(8): 763-776. |
[3] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[4] | 蒋佻宴, 贾田颖, 张琴. 基于胸部增强CT影像组学模型用于胸腺瘤分类的研究[J]. 中国癌症杂志, 2024, 34(6): 581-589. |
[5] | 庄晗, 胡伟刚, 章真, 王佳舟. 基于深度学习算法的病理学图片淋巴细胞浸润检测[J]. 中国癌症杂志, 2024, 34(4): 409-417. |
[6] | 姜梦琦, 韩昱晨, 傅小龙. 基于人工智能的H-E染色全切片病理学图像分析在肺癌研究中的进展[J]. 中国癌症杂志, 2024, 34(3): 306-315. |
[7] | 蒋媛媛, 魏文斐, 吴靖雅, 黎华文. 类器官在妇科恶性肿瘤药物筛选中的应用[J]. 中国癌症杂志, 2024, 34(11): 1053-1060. |
[8] | 欧阳飞, 王阳, 陈瑜, 裴国清, 王陵, 张扬, 石磊. 基于机器学习构建乳腺癌骨转移预测模型[J]. 中国癌症杂志, 2024, 34(10): 903-914. |
[9] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[10] | 刘洋, 胡奕炀, 刘月平, 牛淑瑶, 丁平安, 田园, 郭洪海, 杨沛刚, 张泽, 郑涛, 檀碧波, 范立侨, 李勇, 赵群. 人工智能辅助技术在胃癌新辅助化疗患者HER2表达评估中的价值[J]. 中国癌症杂志, 2023, 33(4): 377-387. |
[11] | 芦瑜, 席雨梦, 何晓明, 杨少坤, 张佳, 王雷, 何朝星, 向柏. 共培养策略在类器官研究中的应用进展[J]. 中国癌症杂志, 2023, 33(3): 293-302. |
[12] | 高鹤丽, 徐近, 陈洁, 虞先濬. 胰腺神经内分泌瘤的精准诊疗进展[J]. 中国癌症杂志, 2023, 33(11): 993-1001. |
[13] | 沈洁, 刘雅静, 莫淼, 周瑾, 王泽洲, 周昌明, 周世崇, 常才, 郑莹. 人工智能辅助超声对中国女性乳腺病灶识别的有效性研究[J]. 中国癌症杂志, 2023, 33(11): 1002-1008. |
[14] | 崔灵珺, 田超, 程梓轩, 郑佳彬, 苏菲, 谭煌英. 胃肠胰神经内分泌肿瘤临床前模型的研究进展[J]. 中国癌症杂志, 2022, 32(9): 779-785. |
[15] | 中国抗癌协会肿瘤多学科诊疗专业委员会, 中国抗癌协会肿瘤内分泌专业委员会. 肿瘤类器官诊治平台的质量控制标准中国专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(7): 657-668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn