[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
[2] |
NORDHOLM-CARSTENSEN A, KRARUP P M, JORGENSEN L N, et al. Occurrence and survival of synchronous pulmonary metastases in colorectal cancer: a nationwide cohort study[J]. Eur J Cancer, 2014, 50(2): 447-456.
|
[3] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019[J]. CA, 2019, 69(1): 7-34.
|
[4] |
CHO J H, KIM S, NAMGUNG M, et al. The prognostic importance of the number of metastases in pulmonary metastasectomy of colorectal cancer[J]. World J Surg Oncol, 2015, 13: 222.
doi: 10.1186/s12957-015-0621-7
pmid: 26205014
|
[5] |
IBRAHIM T, TSELIKAS L, YAZBECK C, et al. Systemic versus local therapies for colorectal cancer pulmonary metastasis: what to choose and when?[J]. J Gastrointest Cancer, 2016, 47(3): 223-231.
doi: 10.1007/s12029-016-9818-4
pmid: 27080402
|
[6] |
QI H, FAN W J. Value of ablation therapy in the treatment of lung metastases[J]. Thorac Cancer, 2018, 9(2): 199-207.
doi: 10.1111/1759-7714.12567
pmid: 29193688
|
[7] |
YU W S, BAE M K, CHOI J K, et al. Pulmonary metastasectomy in colorectal cancer: a population-based retrospective cohort study using the Korean national health insurance database[J]. Cancer Res Treat, 2021, 53(4): 1104-1112.
doi: 10.4143/crt.2020.1213
pmid: 33494126
|
[8] |
NAJAFI A, BAERE T D, PURENNE E, et al. Risk factors for local tumor progression after RFA of pulmonary metastases: a matched case-control study[J]. Eur Radiol, 2021, 31(7): 5361-5369.
doi: 10.1007/s00330-020-07675-y
pmid: 33474569
|
[9] |
CERVANTES A, ADAM R, ROSELLÓ S, et al. Metastatic colorectal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34(1): 10-32.
|
[10] |
YANG Q X, QI H, ZHANG R, et al. Risk factors for local progression after percutaneous radiofrequency ablation of lung tumors: evaluation based on a review of 147 tumors[J]. J Vasc Interv Radiol, 2017, 28(4): 481-489.
doi: S1051-0443(16)30842-9
pmid: 28111196
|
[11] |
DOO F X, VOSSHENRICH J, COOK T S, et al. Environmental sustainability and AI in radiology: a double-edged sword[J]. Radiology, 2024, 310(2): e232030.
|
[12] |
BRANCATO V, ESPOSITO G, COPPOLA L, et al. Standardizing digital biobanks: Integrating imaging, genomic, and clinical data for precision medicine[J]. J Transl Med, 2024, 22(1): 136.
doi: 10.1186/s12967-024-04891-8
pmid: 38317237
|
[13] |
TERRANOVA N, VENKATAKRISHNAN K. Machine learning in modeling disease trajectory and treatment outcomes: an emerging enabler for model-informed precision medicine[J]. Clin Pharmacol Ther, 2024, 115(4): 720-726.
|
[14] |
BEIG N, KHORRAMI M, ALILOU M, et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas[J]. Radiology, 2019, 290(3): 783-792.
doi: 10.1148/radiol.2018180910
pmid: 30561278
|
[15] |
ABTIN F G, ERADAT J, GUTIERREZ A J, et al. Radiofrequency ablation of lung tumors: imaging features of the postablation zone[J]. Radiographics, 2012, 32(4): 947-969.
doi: 10.1148/rg.324105181
pmid: 22786987
|
[16] |
刘宝东, 支修益. 影像引导下热消融治疗肺部肿瘤的局部疗效评价[J]. 中国医学前沿杂志(电子版), 2015, 7(2): 11-14.
|
[17] |
LIU B D, ZHI X Y. Evaluation of local curative effect of image-guided thermal ablation for lung tumors[J]. Chin J Front Med Sci Electron Version, 2015, 7(2): 11-14.
|
[18] |
STARMANS M P A, VAN DER VOORT S R, PHIL T, et al. Reproducible radiomics through automated machine learning validated on twelve clinical applications[EB/OL]. (2022-07-29) [2024-05-07]. http://arxiv.org/abs/2108.08618
|
[19] |
RIGATTI S J. Random forest[J]. J Insur Med, 2017, 47(1): 31-39.
doi: 10.17849/insm-47-01-31-39.1
pmid: 28836909
|
[20] |
QIAN L Q, ZHOU Y J, ZENG W Q, et al. A random forest algorithm predicting model combining intraoperative frozen section analysis and clinical features guides surgical strategy for peripheral solitary pulmonary nodules[J]. Transl Lung Cancer Res, 2022, 11(6): 1132-1144.
|
[21] |
KHUSHI M, SHAUKAT K, ALAM T M, et al. A comparative performance analysis of data resampling methods on imbalance medical data[J]. IEEE Access, 2021, 9: 109960-109975.
|
[22] |
HALL D L, LLINAS J. An introduction to multisensor data fusion[J]. Proc IEEE, 1997, 85(1): 6-23.
|
[23] |
RASHINKAR P, KRUSHNASAMY V S. An overview of data fusion techniques[C]. Bengaluru: ICIMIA, 2017: 694-697.
|
[24] |
MARKICH R, PALUSSIÈRE J, CATENA V, et al. Radiomics complements clinical, radiological, and technical features to assess local control of colorectal cancer lung metastases treated with radiofrequency ablation[J]. Eur Radiol, 2021, 31(11): 8302-8314.
doi: 10.1007/s00330-021-07998-4
pmid: 33954806
|
[25] |
BAÈRE T D, AUPÉRIN A, DESCHAMPS F, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases[J]. Ann Oncol, 2015, 26(5): 987-991.
doi: S0923-7534(19)31500-5
pmid: 25688058
|
[26] |
GONZALEZ M, PONCET A, COMBESCURE C, et al. Risk factors for survival after lung metastasectomy in colorectal cancer patients: a systematic review and meta-analysis[J]. Ann Surg Oncol, 2013, 20(2): 572-579.
doi: 10.1245/s10434-012-2726-3
pmid: 23104709
|
[27] |
PALUSSI RE J, MARCET B, DESCAT E, et al. Lung tumors treated with percutaneous radiofrequency ablation: computed tomography imaging follow-up[J]. Cardiovasc Intervent Radiol, 2011, 34(5): 989-997.
doi: 10.1007/s00270-010-0048-z
pmid: 21127867
|
[28] |
MAPELLI P, BEZZI C, MUFFATTI F, et al. Preoperative assessment of lymph nodal metastases with[68Ga]Ga-DOTATOC PET radiomics for improved surgical planning in well-differentiated pancreatic neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2024, 51(9): 2774-2783.
|
[29] |
ZHU F D, YANG C, XIA Y, et al. CT-based radiomics models may predict the early efficacy of microwave ablation in malignant lung tumors[J]. Cancer Imaging, 2023, 23(1): 60.
doi: 10.1186/s40644-023-00571-w
pmid: 37308918
|
[30] |
HUANG H Z, CHEN H, ZHENG D Z, et al. Habitat-based radiomics analysis for evaluating immediate response in colorectal cancer lung metastases treated by radiofrequency ablation[J]. Cancer Imaging, 2024, 24(1): 44.
doi: 10.1186/s40644-024-00692-w
pmid: 38532520
|
[31] |
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359.
|
[32] |
DUFFY M J, LAMERZ R, HAGLUND C, et al. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update[J]. Int J Cancer, 2014, 134(11): 2513-2522.
doi: 10.1002/ijc.28384
pmid: 23852704
|
[33] |
LIU B, LI C H, SUN X R, et al. Assessment and prognostic value of immediate changes in post-ablation intratumor density heterogeneity of pulmonary tumors via radiomics-based computed tomography features[J]. Front Oncol, 2021, 11: 615174.
|