[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
[2] |
MEDEIROS B, ALLAN A L. Molecular mechanisms of breast cancer metastasis to the lung: clinical and experimental perspectives[J]. Int J Mol Sci, 2019, 20(9): 2272.
|
[3] |
LIANG Y R, ZHANG H W, SONG X J, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets[J]. Semin Cancer Biol, 2020, 60: 14-27.
doi: S1044-579X(19)30063-X
pmid: 31421262
|
[4] |
JIANG Z C, LI J Y, CHEN S J, et al. Zoledronate and SPIO dual-targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis[J]. Sci Rep, 2020, 10(1): 13675.
|
[5] |
ZAJKOWSKA M, LUBOWICKA E, FIEDOROWICZ W, et al. Human plasma levels of VEGF-A, VEGF-C, VEGF-D, their soluble receptor-VEGFR-2 and applicability of these parameters as tumor markers in the diagnostics of breast cancer[J]. Pathol Oncol Res, 2019, 25(4): 1477-1486.
|
[6] |
SIDEY-GIBBONS J A M, SIDEY-GIBBONS C J. Machine learning in medicine: a practical introduction[J]. BMC Med Res Methodol, 2019, 19(1): 64.
|
[7] |
ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
|
[8] |
ANDERSON J P, PARIKH J R, SHENFELD D K, et al. Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: an application of machine learning using electronic health records[J]. J Diabetes Sci Technol, 2015, 10(1): 6-18.
doi: 10.1177/1932296815620200
pmid: 26685993
|
[9] |
RAHIMIAN F, SALIMI-KHORSHIDI G, PAYBERAH A H, et al. Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records[J]. PLoS Med, 2018, 15(11): e1002695.
|
[10] |
GUO Q P, WANG Y Q, AN J, et al. A prognostic model for patients with gastric signet ring cell carcinoma[J]. Technol Cancer Res Treat, 2021, 20: 15330338211027912.
|
[11] |
YANG Y P, MA Y X, SHENG J, et al. A multicenter, retrospective epidemiologic survey of the clinical features and management of bone metastatic disease in China[J]. Chin J Cancer, 2016, 35: 40.
doi: 10.1186/s40880-016-0102-6
pmid: 27112196
|
[12] |
PLUNKETT T A, SMITH P, RUBENS R D. Risk of complications from bone metastases in breast cancer. implications for management[J]. Eur J Cancer, 2000, 36(4): 476-482.
doi: 10.1016/s0959-8049(99)00331-7
pmid: 10717523
|
[13] |
PAREEK A, SINGH O P, YOGI V, et al. Bone metastases incidence and its correlation with hormonal and human epidermal growth factor receptor 2 neu receptors in breast cancer[J]. J Cancer Res Ther, 2019, 15(5): 971-975.
doi: 10.4103/jcrt.JCRT_235_18
pmid: 31603096
|
[14] |
Recommended breast cancer surveillance guidelines. American Society of Clinical Oncology[J]. J Clin Oncol, 1997, 15(5): 2149-2156.
|
[15] |
ROSSELLI DEL TURCO M, PALLI D, CARIDDI A, et al. Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial. National research council project on breast cancer follow-up[J]. JAMA, 1994, 271(20): 1593-1597.
|
[16] |
Impact of follow-up testing on survival and health-related quality of life in breast cancer patients. A multicenter randomized controlled trial. The GIVIO investigators[J]. JAMA, 1994, 271(20): 1587-1592.
|
[17] |
MO X L, CHEN X J, IEONG C, et al. Early prediction of clinical response to etanercept treatment in juvenile idiopathic arthritis using machine learning[J]. Front Pharmacol, 2020, 11: 1164.
doi: 10.3389/fphar.2020.01164
pmid: 32848772
|
[18] |
ZHU J, ZHENG J X, LI L F, et al. Application of machine learning algorithms to predict central lymph node metastasis in T1-T2, non-invasive, and clinically node negative papillary thyroid carcinoma[J]. Front Med, 2021, 8: 635771.
|
[19] |
QIU B X, SHEN Z X, WU S, et al. A machine learning-based model for predicting distant metastasis in patients with rectal cancer[J]. Front Oncol, 2023, 13: 1235121.
|
[20] |
FENG X W, HONG T, LIU W C, et al. Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma[J]. Front Endocrinol, 2022, 13: 1054358.
|
[21] |
XI N M, WANG L, YANG C J. Improving the diagnosis of thyroid cancer by machine learning and clinical data[J]. Sci Rep, 2022, 12(1): 11143.
|
[22] |
SAKHUJA S, DEVEAUX A, WILSON L E, et al. Patterns of de-novo metastasis and breast cancer-specific mortality by race and molecular subtype in the SEER population-based dataset[J]. Breast Cancer Res Treat, 2021, 186(2): 509-518.
|
[23] |
GAO T Y, SHAO F. Risk factors and prognostic factors for inflammatory breast cancer with bone metastasis: a population-based study[J]. J Orthop Surg (Hong Kong), 2021, 29(2): 23094990211000144.
|
[24] |
AKINYEMIJU T, SAKHUJA S, WATERBOR J, et al. Racial/ethnic disparities in de novo metastases sites and survival outcomes for patients with primary breast, colorectal, and prostate cancer[J]. Cancer Med, 2018, 7(4): 1183-1193.
|
[25] |
CHEN J, ZHU S, XIE X Z, et al. Analysis of clinicopathological factors associated with bone metastasis in breast cancer[J]. J Huazhong Univ Sci Technol (Med Sci), 2013, 33(1): 122-125.
|
[26] |
LIEDE A, JERZAK K J, HERNANDEZ R K, et al. The incidence of bone metastasis after early-stage breast cancer in Canada[J]. Breast Cancer Res Treat, 2016, 156(3): 587-595.
|
[27] |
GAO C W, WANG J G, HE P S, et al. Metastatic pattern of breast cancer by histologic grade: a SEER population-based study[J]. Discov Med, 2022, 34(173): 189-197.
|
[28] |
JAMES J J, EVANS A J, PINDER S E, et al. Bone metastases from breast carcinoma: histopathological-radiological correlations and prognostic features[J]. Br J Cancer, 2003, 89(4): 660-665.
|
[29] |
ARPINO G, WEISS H, LEE A V, et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance[J]. J Natl Cancer Inst, 2005, 97(17): 1254-1261.
doi: 10.1093/jnci/dji249
pmid: 16145046
|
[30] |
ARCIERO C A, GUO Y, JIANG R J, et al. ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER-/HER2+ breast cancer[J]. Clin Breast Cancer, 2019, 19(4): 236-245.
|
[31] |
HAYASHI N, IWAMOTO T, QI Y, et al. Bone metastasis-related signaling pathways in breast cancers stratified by estrogen receptor status[J]. J Cancer, 2017, 8(6): 1045-1052.
doi: 10.7150/jca.13690
pmid: 28529618
|
[32] |
LOI S, HAIBE-KAINS B, DESMEDT C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade[J]. J Clin Oncol, 2007, 25(10): 1239-1246.
doi: 10.1200/JCO.2006.07.1522
pmid: 17401012
|
[33] |
KOIZUMI M, YOSHIMOTO M, KASUMI F, et al. An open cohort study of bone metastasis incidence following surgery in breast cancer patients[J]. BMC Cancer, 2010, 10: 381.
doi: 10.1186/1471-2407-10-381
pmid: 20646320
|
[34] |
TAYYEB B, PARVIN M. Pathogenesis of breast cancer metastasis to brain: a comprehensive approach to the signaling network[J]. Mol Neurobiol, 2016, 53(1): 446-454.
doi: 10.1007/s12035-014-9023-z
pmid: 25465242
|
[35] |
LU X, KANG Y B. Organotropism of breast cancer metastasis[J]. J Mammary Gland Biol Neoplasia, 2007, 12(2/3): 153-162.
|
[36] |
YATES L R, KNAPPSKOG S, WEDGE D, et al. Genomic evolution of breast cancer metastasis and relapse[J]. Cancer Cell, 2017, 32(2): 169-184.e7.
doi: S1535-6108(17)30297-0
pmid: 28810143
|
[37] |
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187.
doi: 10.19401/j.cnki.1007-3639.2023.12.004
|
|
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association (2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1187.
|
[38] |
TU Q H, HU C, ZHANG H, et al. Establishment and validation of novel clinical prognosis nomograms for luminal A breast cancer patients with bone metastasis[J]. Biomed Res Int, 2020, 2020: 1972064.
|
[39] |
GAO B, OU X L, LI M F, et al. Risk stratification system and visualized dynamic nomogram constructed for predicting diagnosis and prognosis in rare male breast cancer patients with bone metastases[J]. Front Endocrinol, 2022, 13: 1013338.
|
[40] |
PURUSHOTHAM A, SHAMIL E, CARIATI M, et al. Age at diagnosis and distant metastasis in breast cancer: a surprising inverse relationship[J]. Eur J Cancer, 2014, 50(10): 1697-1705.
|
[41] |
CHEN X, LI D W. Sequencing facility and DNA source associated patterns of virus-mappable reads in whole-genome sequencing data[J]. Genomics, 2021, 113(1 Pt 2): 1189-1198.
doi: 10.1016/j.ygeno.2020.12.004
pmid: 33301893
|
[42] |
LIU G C, CHEN X, LUAN Y H, et al. VirusPredictor: XGBoost-based software to predict virus-related sequences in human data[J]. Bioinformatics, 2024, 40(4): btae192.
|
[43] |
PALECZEK A, GROCHALA D, RYDOSZ A. Artificial breath classification using XGBoost algorithm for diabetes detection[J]. Sensors, 2021, 21(12): 4187.
|
[44] |
DONG B T, ZHANG H, DUAN Y Y, et al. Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma[J]. J Transl Med, 2024, 22(1): 455.
|
[45] |
LI B, EISENBERG N, BEATON D, et al. Using machine learning (XGBoost) to predict outcomes after infrainguinal bypass for peripheral artery disease[J]. Ann Surg, 2024, 279(4): 705-713.
|