中国癌症杂志 ›› 2016, Vol. 26 ›› Issue (10): 831-839.doi: 10.19401/j.cnki.1007-3639.2016.10.005

• 论著 • 上一篇    下一篇

癌基因iASPP-SV参与乳腺癌的形成

董一楠,孔凡铭,张新伟,魏 枫,孙 倩   

  1. 天津医科大学肿瘤医院研究所免疫研究室,国家肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室,天津市肿瘤免疫与生物治疗重点实验室,天津300060
  • 出版日期:2016-10-30 发布日期:2016-11-17
  • 通信作者: 张新伟 E-mail: zhangxinwei@tjmuch.com
  • 基金资助:
    天津市自然科学基金项目(14JCYBJC27100,13JCQNJC10400,14JCYBJC25500)。

iASPP-SV, as an oncogene, participates in breast tumorigenesis and progression

DONG Yinan, KONG Fanming, ZHANG Xinwei, WEI Feng, SUN Qian   

  1. Cell Immunology Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of “Cancer Prevention”, Tianjin Key Laboratory of Immunology and Cancer Biotherapy, Tianjin 300060, China
  • Published:2016-10-30 Online:2016-11-17
  • Contact: ZHANG Xinwei E-mail: zhangxinwei@tjmuch.com

摘要: 背景与目的:p53凋亡刺激蛋白抑制剂(inhibitor of apoptosis-stimulating protein of p53,iASPP)属于ASPP家族成员,其与p53结合,抑制p53靶基因的转录活性,抑制细胞凋亡,与肿瘤形成相关。先前该研究所在课题组发现了iASPP的一个新亚型iASPP剪切变异体(iASPP splice variant,iASPP-SV),其是包含407个氨基酸残基的核蛋白,能与p53结合、抑制p53的转录活性,但是其与乳腺癌细胞增殖的作用还不清楚。因此,该研究旨在探讨iASPP-SV在乳腺癌发生、发展中的作用。方法:用5’-基因末端快速扩增(rapid amplification of cDNA ends,RACE)方法检测乳腺癌细胞系MCF-7的iASPP-SV mRNA的5’末端序列。将pFLAG-iASPP-SV和pFLAGiASPP(828)分别转染HEK 293细胞,采用蛋白[质]印迹法(Western blot)检测HEK293细胞及8种人类肿瘤细胞iASPP-SV的表达情况。建立稳定表达FLAG-iASPP-SV和FLAG-iASPP(828)的NIH 3T3细胞系,细胞增殖分析、克隆形成实验和软琼脂集落形成实验检测iASPP-SV、iASPP(828)是否促进细胞增殖、是否是癌基因。用实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reactive,RTFQ-PCR)的方法检测原发性乳腺癌iASPP-SV和iASPP(828) mRNA表达水平,确定人乳腺癌中iASPP-SV是否上调。用荧光素酶报告基因实验检测iASPP-SV、iASPP(828)、p53与NF-κB/p65的关系。结果:5’-RACE方法显示,MCF-7细胞中的iASPPSV由RAI序列(DQ986418.1)编码。Western blot实验显示,多种人类肿瘤细胞系表达内源性iASPP-SV。细胞增殖分析、克隆形成实验和软琼脂集落形成实验证实iASPP-SV与iASPP(828)能促进肿瘤细胞增殖,是癌基因。RTFQ-PCR实验显示,p53野生型乳腺癌组织iASPP-SV表达水平的中位值比p53突变型显著升高。荧光素酶报告基因实验证实iASPP-SV、iASPP(828)能抑制NF-κB/p65转录,因此iASPP可能是双功能蛋白。结论:iASPP-SV可能作为乳腺癌治疗的有效靶点。

关键词: p53凋亡刺激蛋白抑制剂, p53凋亡刺激蛋白抑制剂剪切变异体, p53, NF-&kappa, B, 乳腺癌

Abstract: Background and purpose: Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is one of the ASPP family. It binds to p53 to inhibit the transcriptional activity of p53-target genes and cell apoptosis, which is associated with tumor formation. Previously, we found a new subtype of iASPP, iASPP splice variant (iASPP-SV), which is a nuclear protein containing 407 amino acid residues and can bind to p53, inhibiting p53 transcriptional activity. However, the relationship of iASPP-SV and breast cancer is still obscure. Therefore, the purpose of this research was to study the role of iASPP-SV on breast cancer tumorigenesis and progression. Methods: 5’-rapid amplification of cDNA ends (RACE) was used to identify the 5’-end of iASPP-SV mRNA in MCF-7 cells. HEK 293 cells were transfected with pFLAG-iASPP-SV and pFLAG-iASPP (828). Then Western blot was used to identify whether endogenous iASPPSV was expressed in HEK 293 cells and 8 types of human tumor cell lines. This study established the stable clones of NIH 3T3 expressing FLAG-iASPP-SV and FLAG-iASPP (828). Cell proliferation assay, colony formation and soft agar colony formation assay were used to identify whether iASPP-SV and iASPP (828) can promote cell proliferation and iASPP-SV is an oncogene. Real-time fluorescent quantitative polymerase chain reactive (RTFQ-PCR) was used to detect the levels of iASPP-SV and iASPP (828) mRNA in primary breast cancers. Luciferase assays were used to identify the relationships between iASPP-SV, iASPP (828), p53 and NF-κB p65. Results: The study identified that iASPP-SV was encoded by previously reported NF-κB p65 subunit (RelA)-associated inhibitor (RAI), and endogenously expressed in many human cancer cell lines. Analysis of cell proliferation, colony formation assay and soft agar assay for colony formation identified that similarly to iASPP (828), iASPP-SV promoted tumor cell proliferation and acted as an oncogene. RTFQ-PCR result showed that the median values of iASPP-SV and iASPP (828) in breast cancers with wild-type p53 were more significantly over-expressed than those of mutant p53. Luciferase assays showed that iASPP-SV and iASPP (828) could suppress NF-κB p65 transcriptional activity. Thus iASPP family may participate in the regulation of p53 and NF-κB activity, which imply that iASPP perhaps shows pro- or anti-survival activities when it interacts with different proteins. Conclusion: These findings indicate that iASPP-SV may be a potential target for breast cancer therapy.

Key words: Inhibitor of apoptosis-stimulating protein of p53, Inhibitor of apoptosis-stimulating protein of p53 splice variant, p53, NF-κB, Breast cancer