China Oncology ›› 2022, Vol. 32 ›› Issue (5): 388-396.doi: 10.19401/j.cnki.1007-3639.2022.05.003
• Specialists' Article • Previous Articles Next Articles
DENG Shuting()(
), FENG Yuan, QIAN Kai, GUO Kai, WANG Zhuoying(
)(
)
Received:
2022-03-25
Revised:
2022-05-01
Online:
2022-05-30
Published:
2022-06-09
Contact:
WANG Zhuoying
E-mail:517710910039@shsmu.edu.cn;zhuoyingwang@hotmail.com
Share article
CLC Number:
DENG Shuting, FENG Yuan, QIAN Kai, GUO Kai, WANG Zhuoying. Meta-analysis of the association between gene alterations and distant metastasis of differentiated thyroid carcinoma in children and adolescents[J]. China Oncology, 2022, 32(5): 388-396.
Tab. 1
Characteristics of included studies"
Author | Published year | Country | Study period | Definition /year | Mean age (range) | Distant metastasis/total (%) | Surgical treatment (%) | RAI/% | Mean follow-up period t/year | Genetic events | Detection method | NOS quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sui[ | 2019 | China | 2005-2018 | ≤20 | 14.54±4.43 | 40/69 (57.8) | TT (100.0) | 100 | 2.7 | BRAF | NR | M |
Zhao[ | 2020 | China | 2007-2019 | ≤20 | NR | 10/77 (13.0) | NR | NR | NR | BRAF | DS | M |
Geng[ | 2019 | China | 2000-2015 | ≤14 | 7.05±1.65 | 6/39 (15.4) | NR | NR | NR | BRAF | DS | M |
Cordioli[ | 2016 | Brazil | 1993-2012 | ≤18 | 11.36±4.52 | 10/30 (33.3) | TT (100.0) | NR | NR | AGK-BRAF | RT-PCR | M |
Sisdelli[ | 2019 | Brazil | 1993-2017 | ≤18 | 12.64±4.08 | 24/80 (30.0) | TT (100.0) | NR | NR | AGK-BRAF | RT-PCR, FISH | M |
BRAF | DS | |||||||||||
Chakraborty[ | 2020 | India | 2005-2018 | ≤20 | 17.00 (14.0-19.0) | 17/95 (17.9) | TT (83.2) | 33.7 | 2.5 | BRAF | DS | M |
HT (16.8) | ||||||||||||
Givens[ | 2014 | America | 1999-2012 | ≤18 | 13.55±3.33 | 5/19 (26.3) | TT (100.0) | NR | NR | BRAF | Pyrosequencing | H |
Geng[ | 2018 | China | 1994-2014 | ≤18 | (3.6-13.8) | 7/48 (14.6) | TT (56.3) | NR | NR | BRAF | DS | M |
HT (43.7) | ||||||||||||
Onder[ | 2016 | Turkey | 1995-2015 | ≤18 | 14.74±3.36 | 5/50 (10.0) | TT (100.0) | 76.0 | 5.8 | BRAF | MASA-PCR | H |
Geng[ | 2019 | China | NR | ≤18 | NR | 7/48 (14.6) | TT (56.3) | NR | NR | TERT | DS | L |
HT (43.7) | ||||||||||||
Stosic[ | 2021 | Canada | NR | ≤18 | 12.80±2.90 | 11/52 (21.2) | NR | NR | NR | BRAF | MASA-PCR | H |
RET | q-PCR | |||||||||||
Franco[ | 2022 | America | 1989-2019 | ≤18 | 14.53±2.99 | 22/131 (16.8) | TT (100.0) | 65.6 | NR | RET | NGS | M |
NTRK | ||||||||||||
BRAF | ||||||||||||
RAS | ||||||||||||
Cordioli[ | 2017 | Brazil | NR | ≤18 | 11.80±4.48 | 13/35 (37.1) | TT (100.0) | NR | NR | BRAF | DS | H |
NTRK | RT-PCR | |||||||||||
AGK-BRAF | RT-PCR, FISH | |||||||||||
RET | RT-PCR | |||||||||||
Alzahrani[ | 2020 | Saudi | 2004-2019 | ≤18 | 17.00 (5.0-18.0) | 5/48(10.4) | TT (100.0) | 89.6 | 10.8 | BRAF | NGS | M |
RET | ||||||||||||
Potter[ | 2021 | America | 2005-2016 | ≤24 | NR | 10/36 (27.8) | NR | 94.0 | NR | BRAF | NGS | M |
RET | ||||||||||||
NTRK | ||||||||||||
Lee[ | 2021 | Korea | 1983-2020 | ≤20 | 14.30±3.80 | 20/106 (18.9) | NR | NR | 7.3 | RET | Various methods | M |
NTRK | ||||||||||||
ALK | ||||||||||||
BRAF | ||||||||||||
Pekova[ | 2020 | Czech | 2003-2019 | ≤20 | 14.50±3.40 | 10/93 (10.8) | TT (88.2) | 90.3 | 6.0 | RET | NGS,RT-PCR | M |
ST (11.8) | NTRK | |||||||||||
ALK | ||||||||||||
BRAF | ||||||||||||
Alzahrani[ | 2017 | Saudi | 1998-2015 | ≤18 | 15.50 (8.0-18.0) | 9/79 (11.4) | TT (100.0) | 92.4 | 5.4 | BRAF | DS | M |
Pekova[ | 2019 | Czech | 2003-2017 | ≤20 | 14.2±3.4 | 10/83 (12.0) | TT (86.7) | 86.7 | 6.0 | RET | RT-PCR | H |
HT (13.3) | BRAF | NGS | ||||||||||
Alzahrani[ | 2016 | Saudi | NR | ≤18 | 16.00 (9.0-18.0) | 8/55 (14.5) | TT (100.0) | 89 | NR | BRAF | DS | M |
[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clin, 2021, 71(1): 7-33.
doi: 10.3322/caac.21654 |
[2] |
HOGAN A R, YING Z G, PEREZ E A, et al. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients[J]. J Surg Res, 2009, 156(1): 167-172.
doi: 10.1016/j.jss.2009.03.098 |
[3] |
VERGAMINI L B, FRAZIER A L, ABRANTES F L, et al. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study[J]. J Pediatr, 2014, 164(6): 1481-1485.
doi: 10.1016/j.jpeds.2014.01.059 |
[4] | JARZAB B, HANDKIEWICZ-JUNAK D. Differentiated thyroid cancer in children and adults: same or distinct disease?[J]. Hormones (Athens), 2007, 6(3): 200-209. |
[5] | ZIMMERMAN D, HAY I D, GOUGH I R, et al. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1 039 patients conservatively treated at one institution during three decades[J]. Surgery, 1988, 104(6): 1157-1166. |
[6] |
CHAKRABORTY D, SHAKYA S, BALLAL S, et al. BRAF V600E and TERT promoter mutations in paediatric and young adult papillary thyroid cancer and clinicopathological correlation[J]. J Pediatr Endocrinol Metab, 2020, 33(11): 1465-1474.
doi: 10.1515/jpem-2020-0174 |
[7] | NEIVA F, MESQUITA J, PACO LIMA S, et al. Thyroid carcinoma in children and adolescents: a retrospective review[J]. Endocrinol Y Nutr, 2012, 59(2): 105-108. |
[8] |
RIVKEES S A, MAZZAFERRI E L, VERBURG F A, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy[J]. Endocr Rev, 2011, 32(6): 798-826.
doi: 10.1210/er.2011-0011 |
[9] |
XING M Z. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nat Rev Cancer, 2013, 13(3): 184-199.
doi: 10.1038/nrc3431 |
[10] |
AGRAWAL N, AKBANI R, AKSOY B A, et al. Integrated genomic characterization of papillary thyroid carcinoma[J]. Cell, 2014, 159(3): 676-690.
doi: 10.1016/j.cell.2014.09.050 |
[11] |
RICARTE-FILHO J C, LI S, GARCIA-RENDUELES M E R, et al. Identification of kinase fusion oncogenes in post-chernobyl radiation-induced thyroid cancers[J]. J Clin Investig, 2013, 123(11): 4935-4944.
doi: 10.1172/JCI69766 |
[12] |
CORDIOLI M I, MORAES L, BASTOS A U, et al. Fusion oncogenes are the main genetic events found in sporadic papillary thyroid carcinomas from children[J]. Thyroid, 2017, 27(2): 182-188.
doi: 10.1089/thy.2016.0387 |
[13] |
SISDELLI L, CORDIOLI M I C V, VAISMAN F, et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma[J]. Pediatr Blood Cancer, 2019, 66(7): e27707.
doi: 10.1002/pbc.27707 |
[14] |
CIAMPI R, KNAUF J A, KERLER R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer[J]. J Clin Investig, 2005, 115(1): 94-101.
doi: 10.1172/JCI23237 |
[15] |
CORDIOLI M I C V, MORAES L, CARVALHEIRA G, et al. AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma[J]. Cancer Med, 2016, 5(7): 1535-1541.
doi: 10.1002/cam4.698 |
[16] | 眭慧敏, 刘杰蕊, 王瞳, 等. 儿童及青少年分化型甲状腺癌远处转移的临床病理学危险因素分析[J]. 中国癌症杂志, 2019, 29(6): 423-428. |
SUI H M, LIU J R, WANG T, et al. Clinicopathological risk factors for distant metastasis of differentiated thyroid carcinoma in children and adolescents[J]. China Oncol, 2019, 29(6): 423-428. | |
[17] | ZHAO J, HUANG M, LING R, et al. Clinicopathological features, BRAF V600E mutation rate and its clinical correlation for thyroid carcinoma in children and adolescent[J]. Modern Oncology, 2020, 28(07): 1120-1124. |
[18] | 耿江桥, 王生才, 郭永丽, 等. 儿童甲状腺乳头状癌BRAF基因突变及其临床意义[J]. 解放军医药杂志, 2019, 31(3): 47-49. |
GENG J Q, WANG S C, GUO Y L, et al. BRAF gene mutation and its clinical significance in children with thyroid papillary carcinoma[J]. Med Pharm J Chin People’s Liberation Army, 2019, 31(3): 47-49. | |
[19] |
GIVENS D J, BUCHMANN L O, AGARWAL A M, et al. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma[J]. Laryngoscope, 2014, 124(9): E389-E393.
doi: 10.1002/lary.24668 |
[20] |
GENG J Q, WANG H M, LIU Y H, et al. Correlation between BRAF V600E mutation and clinicopathological features in pediatric papillary thyroid carcinoma[J]. Sci China Life Sci, 2017, 60(7): 729-738.
doi: 10.1007/s11427-017-9083-8 |
[21] |
ONDER S, OZTURK SARI S, YEGEN G, et al. Classic architecture with multicentricity and local recurrence, and absence of TERT promoter mutations are correlates of BRAF (V600E) harboring pediatric papillary thyroid carcinomas[J]. Endocr Pathol, 2016, 27(2): 153-161.
doi: 10.1007/s12022-016-9420-0 |
[22] |
STOSIC A, FULIGNI F, ANDERSON N D, et al. Diverse oncogenic fusions and distinct gene expression patterns define the genomic landscape of pediatric papillary thyroid carcinoma[J]. Cancer Res, 2021, 81(22): 5625-5637.
doi: 10.1158/0008-5472.CAN-21-0761 |
[23] | FRANCO A T, RICARTE-FILHO J C, ISAZA A, et al. Fusion oncogenes are associated with increased metastatic capacity and persistent disease in pediatric thyroid cancers[J]. J Clin Oncol, 2022, 40(10): 1081-1090. |
[24] | ALZAHRANI A S, ALSWAILEM M, ALSWAILEM A A, et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel[J]. J Clin Endocrinol Metab, 2020, 105(10): dgaa389. |
[25] | POTTER S L, REUTHER J, CHANDRAMOHAN R, et al. Integrated DNA and RNA sequencing reveals targetable alterations in metastatic pediatric papillary thyroid carcinoma[J]. Pediatr Blood Cancer, 2021, 68(1): e28741. |
[26] |
LEE Y A, LEE H, IM S W, et al. NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake[J]. J Clin Invest, 2021, 131(18): e144847.
doi: 10.1172/JCI144847 |
[27] |
PEKOVA B, SYKOROVA V, DVORAKOVA S, et al. RET, NTRK, ALK, BRAF and MET fusions in a large cohort of pediatric papillary thyroid carcinomas[J]. Thyroid, 2020, 30(12): 1771-1780.
doi: 10.1089/thy.2019.0802 |
[28] |
ALZAHRANI A S, MURUGAN A K, QASEM E, et al. Single point mutations in pediatric differentiated thyroid cancer[J]. Thyroid, 2017, 27(2): 189-196.
doi: 10.1089/thy.2016.0339 |
[29] |
PEKOVA B, DVORAKOVA S, SYKOROVA V, et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules[J]. Endocr Connect, 2019, 8(6): 796-805.
doi: 10.1530/EC-19-0069 |
[30] |
ALZAHRANI A S, QASEM E, MURUGAN A K, et al. Uncommon TERT promoter mutations in pediatric thyroid cancer[J]. Thyroid, 2016, 26(2): 235-241.
doi: 10.1089/thy.2015.0510 |
[31] |
DINAUER C A, BREUER C, RIVKEES S A. Differentiated thyroid cancer in children: diagnosis and management[J]. Curr Opin Oncol, 2008, 20(1): 59-65.
doi: 10.1097/CCO.0b013e3282f30220 |
[32] |
GRIGSBY P W, GAL-OR A, MICHALSKI J M, et al. Childhood and adolescent thyroid carcinoma[J]. Cancer, 2002, 95(4): 724-729.
doi: 10.1002/cncr.10725 |
[33] |
WELCH DINAUER C A, TUTTLE R M, ROBIE D K, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults[J]. Clin Endocrinol, 1998, 49(5): 619-628.
doi: 10.1046/j.1365-2265.1998.00584.x |
[34] |
CORDIOLI M I, MORAES L, CURY A N, et al. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma?[J]. Endocr Relat Cancer, 2015, 22(6): R311-R324.
doi: 10.1530/ERC-15-0381 |
[35] |
ALZAHRANI A S, ALKHAFAJI D, TULI M, et al. Comparison of differentiated thyroid cancer in children and adolescents (≤20 years) with young adults[J]. Clin Endocrinol, 2016, 84(4): 571-577.
doi: 10.1111/cen.12845 |
[36] |
LIU Z M, HU D, HUANG Y H, et al. Factors associated with distant metastasis in pediatric thyroid cancer: evaluation of the SEER database[J]. Endocr Connect, 2019, 8(2): 78-85.
doi: 10.1530/EC-18-0441 |
[37] |
ZENG X, WANG Z H, GUI Z Q, et al. High incidence of distant metastasis is associated with histopathological subtype of pediatric papillary thyroid cancer-a retrospective analysis based on SEER[J]. Front Endocrinol (Lausanne), 2021, 12: 760901.
doi: 10.3389/fendo.2021.760901 |
[38] |
NUCERA C, LAWLER J, PARANGI S. BRAF (V600E) and microenvironment in thyroid cancer: a functional link to drive cancer progression[J]. Cancer Res, 2011, 71(7): 2417-2422.
doi: 10.1158/0008-5472.CAN-10-3844 |
[39] |
VASKO V, ESPINOSA A V, SCOUTEN W, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion[J]. PNAS, 2007, 104(8): 2803-2808.
doi: 10.1073/pnas.0610733104 |
[40] | NUCERA C, GOLDFARB M, HODIN R, et al. Role of B-Raf (V600E) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf (V600E)[J]. Biochim Biophys Acta, 2009, 1795(2): 152-161. |
[41] |
KIM S J, LEE K E, MYONG J P, et al. BRAF V600E mutation is associated with tumor aggressiveness in papillary thyroid cancer[J]. World J Surg, 2012, 36(2): 310-317.
doi: 10.1007/s00268-011-1383-1 pmid: 22190222 |
[42] |
TAKACSOVA E, KRALIK R, WACZULIKOVA I, et al. A different prognostic value of BRAF V600E mutation positivity in various age groups of patients with papillary thyroid cancer[J]. Neoplasma, 2017, 64(1): 156-164.
doi: 10.4149/neo_2017_120 |
[43] |
CZARNIECKA A, OCZKO-WOJCIECHOWSKA M, BARCZYŃSKI M. BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence[J]. Gland Surg, 2016, 5(5): 495-505.
doi: 10.21037/gs.2016.09.09 |
[44] |
TUFANO R P, TEIXEIRA G V, BISHOP J, et al. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment[J]. Medicine, 2012, 91(5): 274-286.
doi: 10.1097/MD.0b013e31826a9c71 |
[45] |
NIKIFOROVA M N, CIAMPI R, SALVATORE G, et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas[J]. Cancer Lett, 2004, 209(1): 1-6.
doi: 10.1016/j.canlet.2003.12.004 |
[46] |
KUMAGAI A, NAMBA H, SAENKO V A, et al. Low frequency of BRAF T1796A mutations in childhood thyroid carcinomas[J]. J Clin Endocrinol Metab, 2004, 89(9): 4280-4284.
doi: 10.1210/jc.2004-0172 |
[47] |
PENKO K, LIVEZEY J, FENTON C, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients[J]. Thyroid, 2005, 15(4): 320-325.
doi: 10.1089/thy.2005.15.320 |
[48] | ROSENBAUM E, HOSLER G, ZAHURAK M, et al. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma[J]. Mod Pathol, 2005, 18(7): 898-902. |
[49] |
SASSOLAS G, HAFDI-NEJJARI Z, FERRARO A, et al. Oncogenic alterations in papillary thyroid cancers of young patients[J]. Thyroid, 2012, 22(1): 17-26.
doi: 10.1089/thy.2011.0215 |
[50] |
SANTORO M, CARLOMAGNO F. Central role of RET in thyroid cancer[J]. Cold Spring Harb Perspect Biol, 2013, 5(12): a009233.
doi: 10.1101/cshperspect.a009233 |
[51] |
KUROKAWA K, KAWAI K, HASHIMOTO M, et al. Cell signalling and gene expression mediated by RET tyrosine kinase[J]. J Intern Med, 2003, 253(6): 627-633.
doi: 10.1046/j.1365-2796.2003.01167.x |
[52] |
GALUPPINI F, VIANELLO F, CENSI S, et al. Differentiated thyroid carcinoma in pediatric age: genetic and clinical scenario[J]. Front Endocrinol (Lausanne), 2019, 10: 552.
doi: 10.3389/fendo.2019.00552 |
[53] |
WONG D, YIP S, SORENSEN P H. Methods for identifying patients with tropomyosin receptor kinase (TRK) fusion cancer[J]. Pathol Oncol Res, 2020, 26(3): 1385-1399.
doi: 10.1007/s12253-019-00685-2 |
[54] |
PRASAD M L, VYAS M, HORNE M J, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States[J]. Cancer, 2016, 122(7): 1097-1107.
doi: 10.1002/cncr.29887 |
[55] |
RICARTE-FILHO J C, HALADA S, O'NEILL A, et al. The clinical aspect of NTRK-fusions in pediatric papillary thyroid cancer[J]. Cancer Genet, 2022, 262/263: 57-63.
doi: 10.1016/j.cancergen.2022.01.002 |
[56] | ZHAO X N, KOTCH C, FOX E, et al. NTRK fusions identified in pediatric tumors: the frequency, fusion partners, and clinical outcome[J]. JCO Precis Oncol, 2021, 1: PO.20.00250. |
[57] |
GENG J Q, LIU Y H, GUO Y L, et al. Correlation between TERT C228T and clinic-pathological features in pediatric papillary thyroid carcinoma[J]. Sci China Life Sci, 2019, 62(12): 1563-1571.
doi: 10.1007/s11427-018-9546-5 |
[1] | GUO Wenting, MU Zhuanzhuan, LI Zheng, ZHANG Yingqiang, JIN Xiaona, LIN Yansong. Clinical outcome of 131I therapy in differentiated thyroid cancer patients with suspicious high thyroglobulin concentration [J]. China Oncology, 2022, 32(5): 410-416. |
[2] | Expert Committee of Nuclear Medicine, Chinese society of Clinical Oncology, Expert Committee of Thyroid Cancer, Chinese society of Clinical Oncology, Committee of Thyroid Disease Society, China International Exchange and Promotive Association for Medical and Health Care, Committee of Thyroid Disease Prevention and Treatment Society, China Population Culture Promotion Association. Expert consensus on management of differentiated thyroid carcinoma in children and adolescents (2022 edition) [J]. China Oncology, 2022, 32(5): 451-468. |
[3] | MEI Xiaoran, FENG Fang, WANG Hui, WEI Zhixiao. Analysis of therapeutic response of iodine positive metastasis lymph nodes in differentiated thyroid cancer after 131I treatment [J]. China Oncology, 2022, 32(11): 1091-1097. |
[4] | PENG Zishan, KONG Hui, BAO Zhen, ZHAO Hongxing, LIU Xin, LU Shaohua. Clinicopathological analysis of 83 cases of multifocal lung adenocarcinoma [J]. China Oncology, 2021, 31(5): 408-418. |
[5] | LIU Wei , WANG Xiaojiang , ZHANG Jing , ZHU Weifeng , PENG Fengying , WANG Jianchao , XIAO Weijin , HU Dan . Clinicopathological characteristics and prognostic analysis of medullary thyroid carcinoma in children and adolescents [J]. China Oncology, 2021, 31(11): 1096-1103. |
[6] | LI Min, WEN Peng, QIAN Qiuqin, QIN Ang, ZENG Li, SHI Feng. Clinical study of iodine-125 seeds implantation in the treatment of lymph node metastasis of radioactive iodine- refractory differentiated thyroid cancer [J]. China Oncology, 2020, 30(2): 122-127. |
[7] | YANG Ke, ZHENG Rong, LIN Yansong. The interpretation of management guidelines for children with thyroid nodules and differentiated thyroid cancer: radioactive iodine therapy and new progress [J]. China Oncology, 2019, 29(6): 401-411. |
[8] | ZHANG Liyang, LIU Chunhao, CAO Yue, LIU Hongfeng, GAO Weisheng, LI Xiaoyi. Experiences of 125 cases of re-operated persistent/recurrent differentiated thyroid cancer [J]. China Oncology, 2019, 29(6): 412-417. |
[9] | GAO Luying, LIN Yansong, JIANG Yuxin, LI Jianchu, LI Hui, ZHANG Bo, LIU Ruyu, XI Xuehua, GAO Qiong, WANG Ying, ZHAO Ruina. Evaluation of short-term efficacy of apatinib using cervical ultrasound and thyroglobulin in the treatment of progressive radioactive iodine-refractory differentiated thyroid cancer [J]. China Oncology, 2019, 29(6): 418-422. |
[10] | SUI Huimin, LIU Jierui, WANG Tong, ZHU Zhaohui, LIN Yansong. Clinicopathological risk factors for distant metastasis of differentiated thyroid carcinoma in children and adolescents [J]. China Oncology, 2019, 29(6): 423-428. |
[11] | ZHANG Na, LIN Yansong, LIANG Jun. The clinical significance of thyroglobulin antibody measurement in 131I therapy of differentiated thyroid carcinoma [J]. China Oncology, 2019, 29(6): 452-456. |
[12] | SONG Juanjuan, LIU Yanqing, LIN Yansong. Clinical analysis of short-term outcome in low-to-intermediate-risk thyroid cancer after low-dose 131I therapy [J]. China Oncology, 2019, 29(3): 207-211. |
[13] | ZHONG Jian , JIN Zhengxian , BIAN Weixing , QIU Jiaxing , HOU Jianquan . Effects of FGFR3 and PIK3CA mutations on prognosis of bladder carcinoma [J]. China Oncology, 2019, 29(11): 880-886. |
[14] | LIANG Xiaohua, HUANG Ruofan, ZHAN Qiong. Shanghai expert consensus on the management of brain metastasis of non-small cell lung cancer with driver gene mutations [J]. China Oncology, 2019, 29(1): 71-80. |
[15] | YU Baohua, XUE Tian, ZHANG Yan, et al. MYD88 gene mutation in diffuse large B-cell lymphoma and its clinicopathological relevance [J]. China Oncology, 2018, 28(9): 679-685. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd