[1] |
LOIBL S, POORTMANS P, MORROW M, et al. Breast cancer[J]. Lancet, 2021, 397(10286): 1750-1769.
doi: 10.1016/S0140-6736(20)32381-3
pmid: 33812473
|
[2] |
TAYLOR C, CORREA C, DUANE F K, et al. Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials[J]. J Clin Oncol, 2017, 35(15): 1641-1649.
doi: 10.1200/JCO.2016.72.0722
pmid: 28319436
|
[3] |
GAASCH A, SCHÖNECKER S, SIMONETTO C, et al. Heart sparing radiotherapy in breast cancer: the importance of baseline cardiac risks[J]. Radiat Oncol, 2020, 15(1): 117.
doi: 10.1186/s13014-020-01520-8
pmid: 32448164
|
[4] |
ERVEN K, FLORIAN A, SLAGMOLEN P, et al. Subclinical cardiotoxicity detected by strain rate imaging up to 14 months after breast radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2013, 85(5): 1172-1178.
doi: 10.1016/j.ijrobp.2012.09.022
|
[5] |
TUOHINEN S S, SKYTTÄ T, POUTANEN T, et al. Radiotherapy-induced global and regional differences in early-stage left-sided versus right-sided breast cancer patients: speckle tracking echocardiography study[J]. Int J Cardiovasc Imaging, 2017, 33(4): 463-472.
doi: 10.1007/s10554-016-1021-y
pmid: 27873127
|
[6] |
SAWAYA H, SEBAG I A, PLANA J C, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients[J]. Am J Cardiol, 2011, 107(9): 1375-1380.
doi: 10.1016/j.amjcard.2011.01.006
pmid: 21371685
|
[7] |
THAVENDIRANATHAN P, POULIN F, LIM K D, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review[J]. J Am Coll Cardiol, 2014, 63(25): 2751-2768.
doi: 10.1016/j.jacc.2014.01.073
|
[8] |
HEIMDAL A, STØYLEN A, TORP H, et al. Real-time strain rate imaging of the left ventricle by ultrasound[J]. J Am Soc Echocardiogr, 1998, 11(11): 1013-1019.
doi: 10.1016/S0894-7317(98)70151-8
|
[9] |
TRIVEDI S J, CHOUDHARY P, LO Q, et al. Persistent reduction in global longitudinal strain in the longer term after radiation therapy in patients with breast cancer[J]. Radiother Oncol, 2019, 132: 148-154.
doi: S0167-8140(18)33547-3
pmid: 30414755
|
[10] |
FOURATI N, CHARFEDDINE S, CHAFFAI I, et al. Subclinical left ventricle impairment following breast cancer radiotherapy: is there an association between segmental doses and segmental strain dysfunction?[J]. Int J Cardiol, 2021, 345: 130-136.
doi: 10.1016/j.ijcard.2021.10.026
pmid: 34687800
|
[11] |
WALKER V, LAIREZ O, FONDARD O, et al. Early detection of subclinical left ventricular dysfunction after breast cancer radiation therapy using speckle-tracking echocardiography: association between cardiac exposure and longitudinal strain reduction (BACCARAT study)[J]. Radiat Oncol, 2019, 14(1): 204.
doi: 10.1186/s13014-019-1408-8
pmid: 31727075
|
[12] |
ERVEN K, JURCUT R, WELTENS C, et al. Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients[J]. Int J Radiat Oncol Biol Phys, 2011, 79(5): 1444-1451.
doi: 10.1016/j.ijrobp.2010.01.004
|
[13] |
LO Q, HEE L A, BATUMALAI V, et al. Subclinical cardiac dysfunction detected by strain imaging during breast irradiation with persistent changes 6 weeks after treatment[J]. Int J Radiat Oncol, 2015, 92(2): 268-276.
doi: 10.1016/j.ijrobp.2014.11.016
pmid: 25968824
|
[14] |
YU A F, HO A Y, BRAUNSTEIN L Z, et al. Assessment of early radiation-induced changes in left ventricular function by myocardial strain imaging after breast radiation therapy[J]. J Am Soc Echocardiogr, 2019, 32(4): 521-528.
doi: 10.1016/j.echo.2018.12.009
|
[15] |
HEGGEMANN F, GROTZ H, WELZEL G, et al. Cardiac function after multimodal breast cancer therapy assessed with functional magnetic resonance imaging and echocardiography imaging[J]. Int J Radiat Oncol Biol Phys, 2015, 93(4): 836-844.
doi: 10.1016/j.ijrobp.2015.07.2287
|
[16] |
TRAVIS L B, NG A K, ALLAN J M, et al. Second malignant neoplasms and cardiovascular disease following radiotherapy[J]. J Natl Cancer Inst, 2012, 104(5): 357-370.
doi: 10.1093/jnci/djr533
pmid: 22312134
|
[17] |
STEWART F A, HOVING S, RUSSELL N S. Vascular damage as an underlying mechanism of cardiac and cerebral toxicity in irradiated cancer patients[J]. Radiat Res, 2010, 174(6): 865-869.
doi: 10.1667/RR1862.1
pmid: 21128810
|
[18] |
SCHULTZ-HECTOR S, TROTT K R. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data?[J]. Int J Radiat Oncol, 2007, 67(1): 10-18.
doi: 10.1016/j.ijrobp.2006.08.071
|
[19] |
CARDINALE D, SANDRI M T, COLOMBO A, et al. Prognostic value of troponin Ⅰ in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy[J]. Circulation, 2004, 109(22): 2749-2754.
doi: 10.1161/01.CIR.0000130926.51766.CC
|
[20] |
GARRONE O, CROSETTO N, LO NIGRO C, et al. Prediction of anthracycline cardiotoxicity after chemotherapy by biomarkers kinetic analysis[J]. Cardiovasc Toxicol, 2012, 12(2): 135-142.
doi: 10.1007/s12012-011-9149-4
pmid: 22189487
|
[21] |
D’ERRICO M P, GRIMALDI L, PETRUZZELLI M F, et al. N-terminal pro-B-type natriuretic peptide plasma levels as a potential biomarker for cardiac damage after radiotherapy in patients with left-sided breast cancer[J]. Int J Radiat Oncol, 2012, 82(2): e239-e246.
doi: 10.1016/j.ijrobp.2011.03.058
|
[22] |
STOKKE T M, HASSELBERG N E, SMEDSRUD M K, et al. Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain[J]. J Am Coll Cardiol, 2017, 70(8): 942-954.
doi: S0735-1097(17)37939-1
pmid: 28818204
|
[23] |
HO E, BROWN A, BARRETT P, et al. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study[J]. Heart, 2010, 96(9): 701-707.
doi: 10.1136/hrt.2009.173997
pmid: 20424152
|
[24] |
HARE J L, BROWN J K, LEANO R, et al. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab[J]. Am Heart J, 2009, 158(2): 294-301.
doi: 10.1016/j.ahj.2009.05.031
pmid: 19619708
|