中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (9): 866-873.doi: 10.19401/j.cnki.1007-3639.2023.09.007
收稿日期:
2022-12-02
修回日期:
2023-03-01
出版日期:
2023-09-30
发布日期:
2023-10-01
通信作者:
屠 红(ORCID: 0000-0002-8298-5207),博士,研究员。
作者简介:
李欣然(ORCID: 0000-0002-5914-4645),本科生在读。
基金资助:
LI Xinran1,2(), LIANG Yiyi1, TU Hong1()
Received:
2022-12-02
Revised:
2023-03-01
Published:
2023-09-30
Online:
2023-10-01
Contact:
TU Hong.
文章分享
摘要:
肿瘤内微生物组是指存在于肿瘤中并构成肿瘤微环境的微生物群体。虽然肿瘤病毒的研究已有百余年历史,但细菌、真菌等其他微生物在肿瘤中的存在现象及生物学意义却一直未有定论。近年来,随着高通量测序技术的发展,日益增多的证据表明,细菌等微生物确实能够存活于肿瘤组织中,并与肿瘤的发生、发展及耐药有一定的相关性。本文综述了肿瘤内微生物组的最新研究进展,总结了各肿瘤组织中微生物种群的特征及潜在功能,重点讨论了细菌微生物组在乳腺癌、胰腺癌和肺癌中的作用机制,并展望了其未来临床应用前景。
中图分类号:
李欣然, 梁依依, 屠红. 肿瘤内微生物组的研究进展[J]. 中国癌症杂志, 2023, 33(9): 866-873.
LI Xinran, LIANG Yiyi, TU Hong. Research progress of the intratumoral microbiome[J]. China Oncology, 2023, 33(9): 866-873.
表1
常见肿瘤中的微生物及其在肿瘤发生、发展中的作用和机制"
Cancer type | Microbial species | Function | Mechanism | Reference |
---|---|---|---|---|
Melanoma | Propionibacterium; Staphylococcus aureus; Corynebacterium | Promote cancer growth | Melanoma cells present HLA-conjugated intracellular bacterial peptides to activate T cell immune responses | [ |
Ovarian cancer | Proteobacteria; Firmicutes | Promote cancer growth and metastasis | Up-regulate the expression of TLR5 in tumor cells to promote the mobilization of MDSC; LPS up-regulates the expression of PI3K, EMT and metastasis-related genes in tumor cells | [ |
Nasopharyngeal carcinoma | Corynebacterium; Staphylococcus aureus | Promote cancer recurrence | The increase of bacteria in tumor is negatively correlated with tumor infiltration of CD8+ T cells | [ |
Brain glioma | Pseudomonas; Erythrobacillus; Actinomycetes | Promote cancer growth | Secretion of fatty acids, LPS and other metabolites through the brain-intestinal axis affects the central nervous system immunity | [ |
Bone tumour | Pseudomonas; Actinomycetes | Promote cancer growth | Degrade the hydroxyproline that makes up bone collagen | [ |
Colorectal cancer | Firmicutes; Bacteroidetes; Fusobacterium nucleatum | Promote cancer invasion and metastasis | Down-regulate the expression of m6A methyltransferase METTL3 in tumor tissue and enhance tumor invasiveness; CD8+ T cell infiltration in liver metastases is decreased and MDSC infiltration is increased to inhibit anti-tumor immune response | [ |
Prostate cancer | Pseudomonas; Escherichia coli | Inhibit cancer metastasis and improve the efficacy of immunotherapy | Negatively associated with tumor metastasis; Enhance the immunogenicity of tumor cells; Increase tumor infiltration of immune effector cells | [ |
Gastric carcinoma | Peptostreptococcus Streptococcus; Fusobacterium nucleatum | Promote cancer growth or improve the efficacy of immunotherapy | Increase the content of N-nitrite compounds in the stomach and promote the colonization of harmful bacteria; Increase the expression of PD-L1 in gastric epithelial cells and induce T cell apoptosis; Up-regulate the purine metabolic pathway of the tumor flora, enhancing the immune response | [ |
Cutaneous T-cell lymphoma | Corynebacterium; Staphylococcus aureus | Promote cancer growth | Staphylococcal α-toxin induces normal cell death, while tumor cells are resistant; Inhibition of T cell killing promotes tumor immune escape | [ |
Oral squamous cell carcinoma | Fusobacterium nucleatum; Monad; Prevotella copri | Promote cancer growth and invasion | LPS promotes the release of IL-1 and VEGF in tumor and mononuclear cells and enhances tumor invasiveness; Bacterial metabolites such as acetaldehyde cause DNA damage and over proliferation of epithelial cells | [ |
Squamous cell carcinoma of head and neck | Fusobacterium; Staphylococcus aureus | Promote chronic inflammation; Promote cancer invasion | The amount of bacteria is positively correlated with the tumor infiltration of macrophages and promotes the inflammatory tumor microenvironment; Up-regulate EMT-related signaling molecules in tumor cells | [ |
Esophagus cancer | Fusobacterium; Proteobacteria | Promote cancer occurrence | LPS promotes cancer by promoting the release of inflammation-related mediators | [ |
Gallbladder cancer | Campylobacter; Phyllobacterium | Associated with survival and lymph node metastasis | Not involved | [ |
Bladder cancer | Staphylococcus aureus; Corynebacterium | Promote cancer progression and recurrence | Up-regulate the expression of PD-L1 in cancer tissues and promote immune escape | [ |
Cervical cancer | Lactobacillus; Fusobacterium | Promote cancer growth | Promote Th cells to secrete IL-1β, IL-6 and IL-8 to promote inflammation and inhibit anti-tumor immune response; Induce the accumulation of sphinolipids and glycerols in the outer membrane of cervical epithelial cells, leading to cell damage and the formation of pro-inflammatory microenvironment | [ |
Endometrial cancer | Porphyromonas; Bacteroides; Bacillus faecalis | Induce and promote cancer growth | Activate endometrial cells to produce pro-inflammatory cytokines; Release toxins that damage host DNA and induce autophagy and carcinogenesis | [ |
[1] |
SHOLL J, SEPICH-POORE G D, KNIGHT R, et al. Redrawing therapeutic boundaries: microbiota and cancer[J]. Trends Cancer, 2022, 8(2): 87-97.
doi: 10.1016/j.trecan.2021.10.008 |
[2] |
KNIPPEL R J, DREWES J L, SEARS C L. The cancer microbiome: recent highlights and knowledge gaps[J]. Cancer Discov, 2021, 11(10): 2378-2395.
doi: 10.1158/2159-8290.CD-21-0324 pmid: 34400408 |
[3] |
NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980.
doi: 10.1126/science.aay9189 pmid: 32467386 |
[4] |
PUSHALKAR S, JI X J, LI Y H, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma[J]. BMC Microbiol, 2012, 12: 144.
doi: 10.1186/1471-2180-12-144 pmid: 22817758 |
[5] |
WONG S H, YU J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(11): 690-704.
doi: 10.1038/s41575-019-0209-8 pmid: 31554963 |
[6] |
BERTOCCHI A, CARLONI S, RAVENDA P S, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J]. Cancer Cell, 2021, 39(5): 708-724.e11.
doi: 10.1016/j.ccell.2021.03.004 pmid: 33798472 |
[7] |
GELLER L T, BARZILY-ROKNI M, DANINO T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J]. Science, 2017, 357(6356): 1156-1160.
doi: 10.1126/science.aah5043 pmid: 28912244 |
[8] |
LIU Y, BABA Y, ISHIMOTO T, et al. Gut microbiome in gastrointestinal cancer: a friend or foe?[J]. Int J Biol Sci, 2022, 18(10): 4101-4117.
doi: 10.7150/ijbs.69331 pmid: 35844804 |
[9] |
ÁLVAREZ-MERCADO A I, DEL VALLE CANO A, FERNÁNDEZ M F, et al. Gut microbiota and breast cancer: the dual role of microbes[J]. Cancers (Basel), 2023, 15(2): 443.
doi: 10.3390/cancers15020443 |
[10] |
URBANIAK C, GLOOR G B, BRACKSTONE M, et al. The microbiota of breast tissue and its association with breast cancer[J]. Appl Environ Microbiol, 2016, 82(16): 5039-5048.
doi: 10.1128/AEM.01235-16 |
[11] |
BANERJEE S, WEI Z, TIAN T, et al. Prognostic correlations with the microbiome of breast cancer subtypes[J]. Cell Death Dis, 2021, 12(9): 831.
doi: 10.1038/s41419-021-04092-x pmid: 34482363 |
[12] |
BOSE D, BANERJEE S, SINGH R K, et al. Vascular endothelial growth factor encoded by parapoxviruses can regulate metabolism and survival of triple negative breast cancer cells[J]. Cell Death Dis, 2020, 11(11): 996.
doi: 10.1038/s41419-020-03203-4 pmid: 33219203 |
[13] |
DEVOY C, FLORES BUESO Y, TANGNEY M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology[J]. Front Oncol, 2022, 12: 1020121.
doi: 10.3389/fonc.2022.1020121 |
[14] |
FU A K, YAO B Q, DONG T T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185(8): 1356-1372.e26.
doi: 10.1016/j.cell.2022.02.027 pmid: 35395179 |
[15] |
KLANN E, WILLIAMSON J M, TAGLIAMONTE M S, et al. Microbiota composition in bilateral healthy breast tissue and breast tumors[J]. Cancer Causes Control, 2020, 31(11): 1027-1038.
doi: 10.1007/s10552-020-01338-5 |
[16] |
TZENG A, SANGWAN N, JIA M, et al. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer[J]. Genome Med, 2021, 13(1): 60.
doi: 10.1186/s13073-021-00874-2 pmid: 33863341 |
[17] |
KOVÁCS P, CSONKA T, KOVÁCS T, et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer[J]. Cancers (Basel), 2019, 11(9): 1255.
doi: 10.3390/cancers11091255 |
[18] |
PARHI L, ALON-MAIMON T, SOL A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression[J]. Nat Commun, 2020, 11(1): 3259.
doi: 10.1038/s41467-020-16967-2 pmid: 32591509 |
[19] |
PUSHALKAR S, HUNDEYIN M, DALEY D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4): 403-416.
doi: 10.1158/2159-8290.CD-17-1134 pmid: 29567829 |
[20] |
AYKUT B, PUSHALKAR S, CHEN R N, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL[J]. Nature, 2019, 574(7777): 264-267.
doi: 10.1038/s41586-019-1608-2 |
[21] |
RIQUELME E, ZHANG Y, ZHANG L L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178(4): 795-806.e12.
doi: S0092-8674(19)30773-1 pmid: 31398337 |
[22] |
MENDEZ R, KESH K, ARORA N, et al. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer[J]. Carcinogenesis, 2020, 41(5): 561-570.
doi: 10.1093/carcin/bgz116 pmid: 31369062 |
[23] |
ALAM A, LEVANDUSKI E, DENZ P, et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer[J]. Cancer Cell, 2022, 40(2): 153-167.e11.
doi: 10.1016/j.ccell.2022.01.003 pmid: 35120601 |
[24] |
APOSTOLOU P, TSANTSARIDOU A, PAPASOTIRIOU I, et al. Bacterial and fungal microflora in surgically removed lung cancer samples[J]. J Cardiothorac Surg, 2011, 6: 137.
doi: 10.1186/1749-8090-6-137 pmid: 21999143 |
[25] |
GOMES S, CAVADAS B, FERREIRA J C, et al. Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma[J]. Sci Rep, 2019, 9(1): 12838.
doi: 10.1038/s41598-019-49195-w pmid: 31492894 |
[26] |
SOMMARIVA M, LE NOCI V, BIANCHI F, et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy[J]. Cell Mol Life Sci, 2020, 77(14): 2739-2749.
doi: 10.1007/s00018-020-03452-8 pmid: 31974656 |
[27] |
YU G Q, GAIL M H, CONSONNI D, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features[J]. Genome Biol, 2016, 17(1): 163.
doi: 10.1186/s13059-016-1021-1 pmid: 27468850 |
[28] |
JIN C C, LAGOUDAS G K, ZHAO C, et al. Commensal microbiota promote lung cancer development via γδ T cells[J]. Cell, 2019, 176(5): 998-1013.e16.
doi: S0092-8674(18)31654-4 pmid: 30712876 |
[29] |
GREATHOUSE K L, WHITE J R, VARGAS A J, et al. Interaction between the microbiome and TP53 in human lung cancer[J]. Genome Biol, 2018, 19(1): 123.
doi: 10.1186/s13059-018-1501-6 pmid: 30143034 |
[30] |
DOHLMAN A B, KLUG J, MESKO M, et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors[J]. Cell, 2022, 185(20): 3807-3822.e12.
doi: 10.1016/j.cell.2022.09.015 pmid: 36179671 |
[31] |
LE NOCI V, GUGLIELMETTI S, ARIOLI S, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases[J]. Cell Rep, 2018, 24(13): 3528-3538.
doi: S2211-1247(18)31409-8 pmid: 30257213 |
[32] |
KALAORA S, NAGLER A, NEJMAN D, et al. Identification of bacteria-derived HLA-bound peptides in melanoma[J]. Nature, 2021, 592(7852): 138-143.
doi: 10.1038/s41586-021-03368-8 |
[33] | MIZUHASHI S, KAJIHARA I, SAWAMURA S, et al. Skin microbiome in acral melanoma: corynebacterium is associated with advanced melanoma[J]. J Dermatol, 2021, 48(1): e15-e16. |
[34] |
SIPOS A, UJLAKI G, MIKÓ E, et al. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling[J]. Mol Med, 2021, 27(1): 33.
doi: 10.1186/s10020-021-00295-2 pmid: 33794773 |
[35] |
QIAO H, TAN X R, LI H, et al. Association of intratumoral microbiota with prognosis in patients with nasopharyngeal carcinoma from 2 hospitals in China[J]. JAMA Oncol, 2022, 8(9): 1301-1309.
doi: 10.1001/jamaoncol.2022.2810 pmid: 35834269 |
[36] |
OSADCHIY V, MARTIN C R, MAYER E A. The gut-brain axis and the microbiome: mechanisms and clinical implications[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 322-332.
doi: 10.1016/j.cgh.2018.10.002 |
[37] |
FENG Y, RAMNARINE V R, BELL R, et al. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer[J]. BMC Genomics, 2019, 20(1): 146.
doi: 10.1186/s12864-019-5457-z pmid: 30777011 |
[38] |
ANKER J F, NASEEM A F, MOK H, et al. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy[J]. Nat Commun, 2018, 9(1): 1591.
doi: 10.1038/s41467-018-03900-x pmid: 29686284 |
[39] |
CHEN Y, WU F H, WU P Q, et al. The role of the tumor microbiome in tumor development and its treatment[J]. Front Immunol, 2022, 13: 935846.
doi: 10.3389/fimmu.2022.935846 |
[40] |
CHEN X H, WANG A, CHU A N, et al. Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues[J]. Front Microbiol, 2019, 10: 1261.
doi: 10.3389/fmicb.2019.01261 |
[41] |
LICHT P, MAILÄNDER V. Transcriptional heterogeneity and the microbiome of cutaneous T-cell lymphoma[J]. Cells, 2022, 11(3): 328.
doi: 10.3390/cells11030328 |
[42] |
HARKINS C P, MACGIBENY M A, THOMPSON K, et al. Cutaneous T-cell lymphoma skin microbiome is characterized by shifts in certain commensal bacteria but not viruses when compared with healthy controls[J]. J Invest Dermatol, 2021, 141(6): 1604-1608.
doi: 10.1016/j.jid.2020.10.021 |
[43] |
SAMI A, ELIMAIRI I, STANTON C, et al. The role of the microbiome in oral squamous cell carcinoma with insight into the microbiome-treatment axis[J]. Int J Mol Sci, 2020, 21(21): 8061.
doi: 10.3390/ijms21218061 |
[44] |
QIAO H, LI H, WEN X H, et al. Multi-omics integration reveals the crucial role of Fusobacterium in the inflammatory immune microenvironment in head and neck squamous cell carcinoma[J]. Microbiol Spectr, 2022, 10(4): e0106822.
doi: 10.1128/spectrum.01068-22 |
[45] | SALVUCCI M, CRAWFORD N, STOTT K, et al. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC)[J]. Gut, 2022, 71(8): 1600-1612. |
[46] |
NOMBURG J, BULLMAN S, NASROLLAHZADEH D, et al. An international report on bacterial communities in esophageal squamous cell carcinoma[J]. Int J Cancer, 2022, 151(11): 1947-1959.
doi: 10.1002/ijc.34212 pmid: 35837755 |
[47] |
KIRISHIMA M, YOKOYAMA S, MATSUO K, et al. Gallbladder microbiota composition is associated with pancreaticobiliary and gallbladder cancer prognosis[J]. BMC Microbiol, 2022, 22(1): 147.
doi: 10.1186/s12866-022-02557-3 pmid: 35624429 |
[48] |
CHEN C X, HUANG Z H, HUANG P C, et al. Urogenital microbiota: potentially important determinant of PD-L1 expression in male patients with non-muscle invasive bladder cancer[J]. BMC Microbiol, 2022, 22(1): 7.
doi: 10.1186/s12866-021-02407-8 |
[49] | CASCARDI E, CAZZATO G, DANIELE A, et al. Association between cervical microbiota and HPV: could this be the key to complete cervical cancer eradication?[J]. Biology (Basel), 2022, 11(8): 1114. |
[50] |
MAARSINGH J D, ŁANIEWSKI P, HERBST-KRALOVETZ M M. Immunometabolic and potential tumor-promoting changes in 3D cervical cell models infected with bacterial vaginosis-associated bacteria[J]. Commun Biol, 2022, 5(1): 725.
doi: 10.1038/s42003-022-03681-6 pmid: 35869172 |
[51] |
SOBSTYL M, BRECHT P, SOBSTYL A, et al. The role of microbiota in the immunopathogenesis of endometrial cancer[J]. Int J Mol Sci, 2022, 23(10): 5756.
doi: 10.3390/ijms23105756 |
[52] |
YOU L T, ZHOU J, XIN Z D, et al. Novel directions of precision oncology: circulating microbial DNA emerging in cancer-microbiome areas[J]. Precis Clin Med, 2022, 5(1): pbac005.
doi: 10.1093/pcmedi/pbac005 |
[53] |
KADOSH E, SNIR-ALKALAY I, VENKATACHALAM A, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic[J]. Nature, 2020, 586(7827): 133-138.
doi: 10.1038/s41586-020-2541-0 |
[54] |
PETERS B A, HAYES R B, GOPARAJU C, et al. The microbiome in lung cancer tissue and recurrence-free survival[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(4): 731-740.
doi: 10.1158/1055-9965.EPI-18-0966 |
[55] |
GUENTHER M, HAAS M, HEINEMANN V, et al. Bacterial lipopolysaccharide as negative predictor of gemcitabine efficacy in advanced pancreatic cancer-translational results from the AIO-PK0104 phase 3 study[J]. Br J Cancer, 2020, 123(9): 1370-1376.
doi: 10.1038/s41416-020-01029-7 |
[56] |
POORE G D, KOPYLOVA E, ZHU Q Y, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach[J]. Nature, 2020, 579(7800): 567-574.
doi: 10.1038/s41586-020-2095-1 |
[57] |
XIAO Q, LU W, KONG X X, et al. Alterations of circulating bacterial DNA in colorectal cancer and adenoma: a proof-of-concept study[J]. Cancer Lett, 2021, 499: 201-208.
doi: 10.1016/j.canlet.2020.11.030 pmid: 33249197 |
[58] |
MESSARITAKIS I, VOGIATZOGLOU K, TSANTAKI K, et al. The prognostic value of the detection of microbial translocation in the blood of colorectal cancer patients[J]. Cancers (Basel), 2020, 12(4): 1058.
doi: 10.3390/cancers12041058 |
[59] |
CHO E J, LEEM S, KIM S A, et al. Circulating microbiota-based metagenomic signature for detection of hepatocellular carcinoma[J]. Sci Rep, 2019, 9(1): 7536.
doi: 10.1038/s41598-019-44012-w pmid: 31101866 |
[1] | 谭洪, 林圣庚, 熊毅. 人工智能赋能癌症协同药物组合预测的现状与挑战[J]. 中国癌症杂志, 2024, 34(9): 807-813. |
[2] | 冯欣滢, 王冰, 刘培峰. 腹膜转移癌腹腔化疗的创新与挑战[J]. 中国癌症杂志, 2024, 34(9): 827-837. |
[3] | 陈奕君, 刘雨航, 段海波, 王雄军. AGPAT5在肝癌中的功能与机制研究[J]. 中国癌症杂志, 2024, 34(9): 838-847. |
[4] | 温自强, 兰军良, 周博, 许其威. PARP1通过调控POU2F2的表达促进肝细胞癌的进展研究[J]. 中国癌症杂志, 2024, 34(9): 848-856. |
[5] | 黄浩哲, 陈红, 郑德重, 陈超, 王英, 许立超, 王耀辉, 何新红, 杨媛媛, 李文涛. 基于CT的影像组学诺模图预测结直肠癌肺转移射频消融后的局部肿瘤进展[J]. 中国癌症杂志, 2024, 34(9): 857-872. |
[6] | 伍雯, 张若昕, 翁俊勇, 马延磊, 蔡国响, 李心翔, 杨永志. 探索阳性淋巴结比率在ypⅢ期结直肠癌患者中的预后价值及预测模型的建立[J]. 中国癌症杂志, 2024, 34(9): 873-880. |
[7] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[8] | 中国抗癌协会泌尿生殖肿瘤整合康复专业委员会. 根治性前列腺切除术围手术期整合康复中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(9): 890-902. |
[9] | 严研, 周立庆, 夏建洪, 马婷婷. TCF7转录激活MACC1调节有氧糖酵解促进直肠癌奥沙利铂耐药[J]. 中国癌症杂志, 2024, 34(8): 715-725. |
[10] | 肖锋, 许桐林, 朱琳, 肖静文, 吴天祺, 顾春燕. M1型肿瘤相关巨噬细胞在肝细胞癌组织中浸润的意义[J]. 中国癌症杂志, 2024, 34(8): 726-733. |
[11] | 葛祖荫, 宋坤, 林云霄, 钟烨凌, 郝敬铎. 循环肿瘤细胞FCGBP和BIGH3作为结直肠癌潜在生物标志物的可行性研究[J]. 中国癌症杂志, 2024, 34(8): 745-752. |
[12] | 曹飞, 俞文豪, 唐晓男, 马子冬, 常廷民, 龚亚斌, 廖明娟, 康小红. LINC01410促进食管鳞状细胞癌细胞增殖和迁移的作用及其机制研究[J]. 中国癌症杂志, 2024, 34(8): 753-762. |
[13] | 曹晓珊, 杨蓓蓓, 丛斌斌, 刘红. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784. |
[14] | 张剑. 关于女性乳腺癌患者绝经状态判断两个关键问题的临床思考[J]. 中国癌症杂志, 2024, 34(7): 619-627. |
[15] | 王蔓莉, 陈辉, 段智, 许奇美, 李贞. 普列克底物蛋白2/miR-196a信号轴介导肿瘤微环境中肺癌细胞的通讯机制研究[J]. 中国癌症杂志, 2024, 34(7): 628-638. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn