中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (10): 1000-1006.doi: 10.19401/j.cnki.1007-3639.2022.10.008
收稿日期:
2022-06-02
修回日期:
2022-10-19
出版日期:
2022-10-30
发布日期:
2022-11-29
作者简介:
曹达龙(ORCID: 0000-0001-8177-4347),副主任医师。
CAO Dalong1,2(), YE Dingwei1,2(
)
Received:
2022-06-02
Revised:
2022-10-19
Published:
2022-10-30
Online:
2022-11-29
文章分享
摘要:
肾癌是泌尿系统常见的恶性肿瘤之一。近年来,我国肾癌的发病率呈逐年上升的趋势,严重威胁着人们的健康。调节性细胞死亡是由一种细胞主动有序的死亡方式,普遍存在于生命活动过程中,在维系生命活动的平衡中发挥着至关重要的作用。近期Science杂志上报道了一种新的调节性细胞死亡方式即铜死亡,进一步强化了生命体中细胞死亡的重要性。随着对调节性细胞死亡认识的不断深入,越来越多的研究显示不同的调节性细胞死亡(如铁死亡、焦亡、自噬等)均与肾癌的发生、发展密切相关。如诱导细胞铁死亡将显著抑制肾癌的侵袭和转移、并与肾癌患者的更好预后密切相关;细胞焦亡不仅可以诱导肾癌细胞死亡还可以激活抗肾癌的免疫应答;自噬在肾癌中具有“双向”作用,增强自噬可抑制肾癌细胞生长,但也可能减弱联合用药治疗的效果;抑制细胞凋亡和坏死性凋亡可以显著促进肾癌细胞的增殖、侵袭等。本文将综述铁死亡、细胞焦亡、自噬、细胞凋亡和坏死性凋亡的分子机制和在肾癌发生、发展中作用的研究进展并进行展望,为探索肾癌的发病机制和潜在的治疗靶点提供新的视角。
中图分类号:
曹达龙 综述, 叶定伟 审校. 肾癌中调节性细胞死亡的新动向和未来展望[J]. 中国癌症杂志, 2022, 32(10): 1000-1006.
CAO Dalong, YE Dingwei. New trends and future prospects of regulatory cell death in renal carcinoma[J]. China Oncology, 2022, 32(10): 1000-1006.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[2] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2018, 68(6): 394-424.
doi: 10.3322/caac.21492 |
[3] | ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. |
[4] |
CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
doi: 10.3322/caac.21338 |
[5] |
COHEN H T, MCGOVERN F J. Renal-cell carcinoma[J]. N Engl J Med, 2005, 353(23): 2477-2490.
doi: 10.1056/NEJMra043172 |
[6] |
POWLES T, PLIMACK E R, SOULIÈRES D, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2020, 21(12): 1563-1573.
doi: 10.1016/S1470-2045(20)30436-8 pmid: 33284113 |
[7] |
MOTZER R J, TANNIR N M, MCDERMOTT D F, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med, 2018, 378(14): 1277-1290.
doi: 10.1056/NEJMoa1712126 |
[8] |
FUCHS Y, STELLER H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4): 742-758.
doi: 10.1016/j.cell.2011.10.033 pmid: 22078876 |
[9] |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
doi: 10.1126/science.abf0529 pmid: 35298263 |
[10] |
LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
doi: 10.1038/s41419-020-2298-2 pmid: 32015325 |
[11] | FANG Y, TIAN S W, PAN Y T, et al. Pyroptosis: a new frontier in cancer[J]. Biomedecine Pharmacother, 2020, 121: 109595. |
[12] |
LEVY J M M, TOWERS C G, THORBURN A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542.
doi: 10.1038/nrc.2017.53 pmid: 28751651 |
[13] |
CARNEIRO B A, EL-DEIRY W S. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol, 2020, 17(7): 395-417.
doi: 10.1038/s41571-020-0341-y pmid: 32203277 |
[14] |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[15] |
DOLMA S, LESSNICK S L, HAHN W C, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296.
pmid: 12676586 |
[16] |
ZHOU B R, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020, 66: 89-100.
doi: S1044-579X(19)30006-9 pmid: 30880243 |
[17] |
LEI G, ZHUANG L, GAN B Y. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22(7): 381-396.
doi: 10.1038/s41568-022-00459-0 pmid: 35338310 |
[18] |
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331.
doi: 10.1016/j.cell.2013.12.010 |
[19] |
MIESS H, DANKWORTH B, GOUW A M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma[J]. Oncogene, 2018, 37(40): 5435-5450.
doi: 10.1038/s41388-018-0315-z pmid: 29872221 |
[20] |
YANG W H, DING C K C, SUN T A, et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma[J]. Cell Rep, 2019, 28(10): 2501-2508.e4.
doi: 10.1016/j.celrep.2019.07.107 |
[21] |
LEE H, ZANDKARIMI F, ZHANG Y L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234.
doi: 10.1038/s41556-020-0461-8 pmid: 32029897 |
[22] |
LU Y Q, QIN H X, JIANG B, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma[J]. Cancer Lett, 2021, 522: 1-13.
doi: 10.1016/j.canlet.2021.09.014 pmid: 34520818 |
[23] |
KERINS M J, MILLIGAN J, WOHLSCHLEGEL J A, et al. Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction[J]. Cancer Sci, 2018, 109(9): 2757-2766.
doi: 10.1111/cas.13701 |
[24] |
COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113-114.
pmid: 11303500 |
[25] |
LIU X, ZHANG Z B, RUAN J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158.
doi: 10.1038/nature18629 |
[26] |
SHI J J, GAO W Q, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.
doi: S0968-0004(16)30182-7 pmid: 27932073 |
[27] |
KAYAGAKI N, WONG M T, STOWE I B, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4[J]. Science, 2013, 341(6151): 1246-1249.
doi: 10.1126/science.1240248 pmid: 23887873 |
[28] |
LAGRANGE B, BENAOUDIA S, WALLET P, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11[J]. Nat Commun, 2018, 9(1): 242.
doi: 10.1038/s41467-017-02682-y pmid: 29339744 |
[29] |
WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103.
doi: 10.1038/nature22393 |
[30] |
HOU J W, ZHAO R C, XIA W Y, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis[J]. Nat Cell Biol, 2020, 22(10): 1264-1275.
doi: 10.1038/s41556-020-0575-z pmid: 32929201 |
[31] |
WEI X, XIE F, ZHOU X X, et al. Role of pyroptosis in inflammation and cancer[J]. Cell Mol Immunol, 2022, 19(9): 971-992.
doi: 10.1038/s41423-022-00905-x pmid: 35970871 |
[32] |
SUN Z L, JING C Y, GUO X D, et al. Comprehensive analysis of the immune infiltrates of pyroptosis in kidney renal clear cell carcinoma[J]. Front Oncol, 2021, 11: 716854.
doi: 10.3389/fonc.2021.716854 |
[33] |
YAO L, LI J N, XU Z J, et al. GSDMs are potential therapeutic targets and prognostic biomarkers in clear cell renal cell carcinoma[J]. Aging, 2022, 14(6): 2758-2774.
doi: 10.18632/aging.203973 |
[34] | TANG X F, ZHANG A N, FENG Y Y, et al. A novel pyroptosis-related lncRNAs signature for predicting the prognosis of kidney renal clear cell carcinoma and its associations with immunity[J]. J Oncol, 2021, 2021: 9997185. |
[35] |
TAN Y F, WANG M, CHEN Z Y, et al. Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis[J]. Cell Death Dis, 2020, 11(4): 239.
doi: 10.1038/s41419-020-2431-2 |
[36] |
CHOI A M, RYTER S W, LEVINE B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(7): 651-662.
doi: 10.1056/NEJMra1205406 |
[37] |
LEVINE B, KROEMER G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42.
doi: 10.1016/j.cell.2018.09.048 |
[38] |
ALESSANDRINI F, PEZZÈ L, CIRIBILLI Y. LAMPs: shedding light on cancer biology[J]. Semin Oncol, 2017, 44(4): 239-253.
doi: S0093-7754(17)30046-5 pmid: 29526252 |
[39] |
ZHAO Y, CODOGNO P, ZHANG H. Machinery, regulation and pathophysiological implications of autophagosome maturation[J]. Nat Rev Mol Cell Biol, 2021, 22(11): 733-750.
doi: 10.1038/s41580-021-00392-4 |
[40] | RUSSELL R C, GUAN K L. The multifaceted role of autophagy in cancer[J]. EMBO J, 2022, 41(13): e110031. |
[41] |
LEBOVITZ C B, ROBERTSON A G, GOYA R, et al. Cross-cancer profiling of molecular alterations within the human autophagy interaction network[J]. Autophagy, 2015, 11(9): 1668-1687.
doi: 10.1080/15548627.2015.1067362 pmid: 26208877 |
[42] |
KANG J H, LEE J S, HONG D, et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy[J]. Cell Death Dis, 2016, 7: e2163.
doi: 10.1038/cddis.2016.14 |
[43] |
TURCOTTE S, CHAN D A, SUTPHIN P D, et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy[J]. Cancer Cell, 2008, 14(1): 90-102.
doi: 10.1016/j.ccr.2008.06.004 pmid: 18598947 |
[44] |
YANG X Q, ZHANG Y Y, FAN H Y. Downregulation of SBF2-AS1 functions as a tumor suppressor in clear cell renal cell carcinoma by inhibiting miR-338-3p-targeted ETS1[J]. Cancer Gene Ther, 2021, 28(7/8): 813-827.
doi: 10.1038/s41417-020-0197-4 |
[45] |
LIANG X Y, DE VERA M E, BUCHSER W J, et al. Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression[J]. Cancer Res, 2012, 72(11): 2791-2801.
doi: 10.1158/0008-5472.CAN-12-0320 pmid: 22472122 |
[46] |
PIETROCOLA F, POL J, VACCHELLI E, et al. Caloric restriction mimetics enhance anticancer immunosurveillance[J]. Cancer Cell, 2016, 30(1): 147-160.
doi: S1535-6108(16)30221-5 pmid: 27411589 |
[47] |
ZHANG T, WANG Y N, INUZUKA H, et al. Necroptosis pathways in tumorigenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 32-40.
doi: 10.1016/j.semcancer.2022.07.007 |
[48] |
ZHAO C, ZHOU Y F, RAN Q, et al. microRNA-381-3p functions as a dual suppressor of apoptosis and necroptosis and promotes proliferation of renal cancer cells[J]. Front Cell Dev Biol, 2020, 8: 290.
doi: 10.3389/fcell.2020.00290 pmid: 32411707 |
[49] |
MAO Q Y, ZHUANG Q F, SHEN J, et al. MiRNA-124 regulates the sensitivity of renal cancer cells to cisplatin-induced necroptosis by targeting the CAPN4-CNOT3 axis[J]. Transl Androl Urol, 2021, 10(9): 3669-3683.
doi: 10.21037/tau-21-777 pmid: 34733662 |
[50] | WANG K J, MENG X Y, CHEN J F, et al. Emodin induced necroptosis and inhibited glycolysis in the renal cancer cells by enhancing ROS[J]. Oxid Med Cell Longev, 2021, 2021: 8840590. |
[51] |
BRADLEY J R, WANG J, PACEY S, et al. Tumor necrosis factor receptor-2 signaling pathways promote survival of cancer stem-like CD133+ cells in clear cell renal carcinoma[J]. FASEB Bioadvances, 2020, 2(2): 126-144.
doi: 10.1096/fba.2019-00071 |
[1] | 吴志柏, 许桂琴, 张力, 杨兆娟, 刘昀, 焦琨, 陈泽宏, 许晨, 左佑, 郑宁倩, 叶志谦, 刘永忠. KCMF1促进结直肠癌细胞增殖和NF-κB信号转导的机制研究[J]. 中国癌症杂志, 2024, 34(11): 987-997. |
[2] | 马小兰, 王娟, 石斌, 王南, 田治翠, 曹佳. hnRNPK调控Wnt/β-catenin信号转导通路抑制乳腺癌细胞铁死亡[J]. 中国癌症杂志, 2024, 34(10): 931-943. |
[3] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[4] | 陈红, 陈俊霞. 环状RNA hsa_circ_0001573对乳腺癌细胞生物学行为的影响及机制研究[J]. 中国癌症杂志, 2023, 33(4): 342-353. |
[5] | 冷婕, 邱国春, 张菠, 蒲艳. 乳腺癌中心体调控蛋白SEC23B在肿瘤浸润转移中的作用及其机制研究[J]. 中国癌症杂志, 2023, 33(2): 152-161. |
[6] | 贾聿明, 叶增, 邓艳丽, 李胜超, 张志磊, 王超, 徐晓武, 秦毅, 彭利. FBW7基因通过GSDME介导的焦亡增强紫杉醇对胰腺癌的抗肿瘤作用研究[J]. 中国癌症杂志, 2023, 33(10): 889-897. |
[7] | 刁新峰, 李新茂, 候亮, 魏志玄. YTHDF2通过诱导IGFBP7的mRNA衰变激活PI3K/AKT信号转导通路促进胶质母细胞瘤进展的研究[J]. 中国癌症杂志, 2022, 32(3): 218-227. |
[8] | 崔忠泽, 何双, 温菲菲, 李扬扬, 许晓阳, 路丽祯, 吴淑华. 干预自噬影响DPD的表达促进5-FU抗结直肠癌疗效的实验研究[J]. 中国癌症杂志, 2022, 32(12): 1199-1209. |
[9] | 张家祥, 周永学, 闫曙光, 赵唯含, 董汾. 缺氧诱导的线粒体自噬与糖代谢重编程对胃癌前病变影响的研究进展[J]. 中国癌症杂志, 2022, 32(10): 1007-1015. |
[10] | 贾真真, 何双, 李扬扬, 温菲菲, 许晓阳, 郭宁杰, 吴淑华. 结直肠癌中DPD与LC3、P62表达的相关性及其临床意义[J]. 中国癌症杂志, 2022, 32(1): 24-33. |
[11] | 徐文浩, 田熙, 艾合太木江·安外尔, 瞿元元, 施国海, 张海梁, 叶定伟. 人工智能在泌尿系统肿瘤中的应用研究进展[J]. 中国癌症杂志, 2022, 32(1): 68-74. |
[12] | 李海洲, 张艳炜, 许英杰, 杨 门, 张 磊, 韩京军 . miR-933调控KLF6基因影响非小细胞肺癌的作用研究[J]. 中国癌症杂志, 2021, 31(7): 581-588. |
[13] | 王 方 , 王 昕 , 刘 哲 , 惠凌云 , 冯 艾 , 李 娜 , 王亚文 . 抑制PDK1经由ASK1/JNK/Bim通路诱导慢性粒细胞白血病细胞凋亡[J]. 中国癌症杂志, 2020, 30(6): 401-406. |
[14] | 燕飞虎 , 邹 瑞 , 王一尧 , 王芳芳 , 冉浩男 , 王 燕 . PRMT5在胃癌中的表达及其对胃癌细胞增殖、凋亡、迁移能力的影响[J]. 中国癌症杂志, 2020, 30(4): 275-283. |
[15] | 程 淇, 易晓芳 . 铁死亡在肿瘤耐药中作用的研究进展[J]. 中国癌症杂志, 2020, 30(2): 148-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn