中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (6): 629-636.doi: 10.19401/j.cnki.1007-3639.2023.06.011
• 综述 • 上一篇
张少秋1(), 燕丽1, 李瑞辰1, 赵阳1, 王孝深1, 杨旭光2, 朱奕1(
)
收稿日期:
2023-01-02
修回日期:
2023-05-09
出版日期:
2023-06-30
发布日期:
2023-07-26
通信作者:
朱 奕(ORCID:0000-0002-2222-0106),博士,副主任医师。
作者简介:
张少秋(ORCID: 0009-0001-6385-2644),硕士研究生。
ZHANG Shaoqiu1(), YAN Li1, LI Ruichen1, ZHAO Yang1, WANG Xiaoshen1, YANG Xuguang2, ZHU Yi1(
)
Received:
2023-01-02
Revised:
2023-05-09
Published:
2023-06-30
Online:
2023-07-26
文章分享
摘要:
头颈部恶性肿瘤(head and neck cancer,HNC)作为一类常见的恶性肿瘤,至今仍有较高的发病率和死亡率。在HNC中,头颈部鳞状细胞癌(head and neck squamous-cell carcinoma,HNSCC)是最常见的病理学类型。肿瘤微环境(tumor microenvironment,TME)是指肿瘤细胞周围的成分,主要包括免疫细胞、基质细胞、细胞外基质(extracellular matrix,ECM)、血管和淋巴管及其驱动分子。一些针对TME的肿瘤治疗策略已在临床上广泛应用,并产生了显著的治疗效果。更深层次地探索TME中各组分之间的相互作用机制具有重要意义。本文综述了HNSCC的TME中细胞毒性T淋巴细胞(cytotoxicity T lymphocyte,CTL)、CD4+ T 淋巴细胞、调节性T细胞(regulatory T cell,Treg)、髓样来源抑制细胞(marrow-derived myeloid cell,MDSC)、自然杀伤(natural killer,NK)细胞、肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)的最新研究进展。本文中总结的研究主要聚焦于如何恢复抗肿瘤细胞活性,以及如何消除Treg等免疫抑制细胞的免疫抑制作用,旨在为研究更有效的HNSCC治疗方法提供新思路。
中图分类号:
张少秋, 燕丽, 李瑞辰, 赵阳, 王孝深, 杨旭光, 朱奕. 头颈部鳞状细胞癌免疫微环境及其作用机制的最新研究进展及展望[J]. 中国癌症杂志, 2023, 33(6): 629-636.
ZHANG Shaoqiu, YAN Li, LI Ruichen, ZHAO Yang, WANG Xiaoshen, YANG Xuguang, ZHU Yi. Recent advances and prospect in immune microenvironment and its mechanisms of function in head and neck squamous cell carcinoma[J]. China Oncology, 2023, 33(6): 629-636.
[1] |
GUPTA B, JOHNSON N W, KUMAR N. Global epidemiology of head and neck cancers: a continuing challenge[J]. Oncology, 2016, 91(1): 13-23.
doi: 10.1159/000446117 pmid: 27245686 |
[2] |
HO A S, KIM S, TIGHIOUART M, et al. Metastatic lymph node burden and survival in oral cavity cancer[J]. J Clin Oncol, 2017, 35(31): 3601-3609.
doi: 10.1200/JCO.2016.71.1176 pmid: 28880746 |
[3] |
FAN S, TANG Q L, LIN Y J, et al. A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma[J]. Int J Oral Sci, 2011, 3(4): 180-191.
doi: 10.4248/IJOS11068 pmid: 22010576 |
[4] |
RETTIG E M, D'SOUZA G. Epidemiology of head and neck cancer[J]. Surg Oncol Clin N Am, 2015, 24(3): 379-396.
doi: 10.1016/j.soc.2015.03.001 pmid: 25979389 |
[5] |
COHEN N, FEDEWA S, CHEN A Y. Epidemiology and demographics of the head and neck cancer population[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(4): 381-395.
doi: 10.1016/j.coms.2018.06.001 |
[6] |
SACCO A G, COHEN E E. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma[J]. J Clin Oncol, 2015, 33(29): 3305-3313.
doi: 10.1200/JCO.2015.62.0963 pmid: 26351341 |
[7] |
HANAHAN D, COUSSENS L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-322.
doi: 10.1016/j.ccr.2012.02.022 pmid: 22439926 |
[8] |
JOYCE J A, FEARON D T. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015, 348(6230): 74-80.
doi: 10.1126/science.aaa6204 pmid: 25838376 |
[9] |
TADDEI M L, GIANNONI E, COMITO G, et al. Microenvironment and tumor cell plasticity: an easy way out[J]. Cancer Lett, 2013, 341(1): 80-96.
doi: 10.1016/j.canlet.2013.01.042 pmid: 23376253 |
[10] |
PIETRAS K, OSTMAN A. Hallmarks of cancer: interactions with the tumor stroma[J]. Exp Cell Res, 2010, 316(8): 1324-1331.
doi: 10.1016/j.yexcr.2010.02.045 pmid: 20211171 |
[11] |
MEI Z, HUANG J W, QIAO B, et al. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma[J]. Int J Oral Sci, 2020, 12(1): 16.
doi: 10.1038/s41368-020-0084-8 pmid: 32461587 |
[12] |
YANG B, LIU T J, QU Y, et al. Progresses and perspectives of anti-PD-1/PD-L1 antibody therapy in head and neck cancers[J]. Front Oncol, 2018, 8: 563.
doi: 10.3389/fonc.2018.00563 pmid: 30547012 |
[13] |
CARLISLE J W, STEUER C E, OWONIKOKO T K, et al. An update on the immune landscape in lung and head and neck cancers[J]. CA Cancer J Clin, 2020, 70(6): 505-517.
doi: 10.3322/caac.v70.6 |
[14] |
PAMER E, CRESSWELL P. Mechanisms of MHC classⅠ: restricted antigen processing[J]. Annu Rev Immunol, 1998, 16: 323-358.
doi: 10.1146/immunol.1998.16.issue-1 |
[15] |
VAN DOMSELAAR R, QUADIR R, et al. VAN DER MADE A M, All human granzymes target hnRNP K that is essential for tumor cell viability[J]. J Biol Chem, 2012, 287(27): 22854-22864.
doi: 10.1074/jbc.M112.365692 pmid: 22582387 |
[16] |
VAN DOMSELAAR R, DE POOT S A, REMMERSWAAL E B, et al. Granzyme M targets host cell hnRNP K that is essential for human cytomegalovirus replication[J]. Cell Death Differ, 2013, 20(3): 419-429.
doi: 10.1038/cdd.2012.132 pmid: 23099853 |
[17] | MANDAL R, ŞENBABAOĞLU Y, DESRICHARD A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications[J]. JCI Insight, 2016, 1(17): e89829. |
[18] |
LIU L H, LIM M A, JUNG S N, et al. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer[J]. Phytomedicine, 2021, 92: 153758.
doi: 10.1016/j.phymed.2021.153758 |
[19] |
WANG H C, CHAN L P, CHO S F. Targeting the immune microenvironment in the treatment of head and neck squamous cell carcinoma[J]. Front Oncol, 2019, 9: 1084.
doi: 10.3389/fonc.2019.01084 |
[20] |
MONTLER R, BELL R B, THALHOFER C, et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer[J]. Clin Transl Immunol, 2016, 5(4): e70.
doi: 10.1038/cti.2016.16 |
[21] |
MAZZONI A, CAPONE M, RAMAZZOTTI M, et al. IL4I1 is expressed by head-neck cancer-derived mesenchymal stromal cells and contributes to suppress T cell proliferation[J]. J Clin Med, 2021, 10(10): 2111.
doi: 10.3390/jcm10102111 |
[22] |
LI H Z, XIAO Y, LI Q, et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1[J]. Cancer Cell, 2022, 40(1): 36-52.e9.
doi: 10.1016/j.ccell.2021.11.002 |
[23] |
LI J Y, ZHAO Y, GONG S, et al. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models[J]. Nat Commun, 2023, 14(1): 865.
doi: 10.1038/s41467-023-36523-y |
[24] |
HIRAHARA K, NAKAYAMA T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm[J]. Int Immunol, 2016, 28(4): 163-171.
doi: 10.1093/intimm/dxw006 |
[25] |
LAIDLAW B J, CRAFT J E, KAECH S M. The multifaceted role of CD4+ T cells in CD8+ T cell memory[J]. Nat Rev Immunol, 2016, 16(2): 102-111.
doi: 10.1038/nri.2015.10 |
[26] |
SAKAGUCHI S, YAMAGUCHI T, NOMURA T, et al. Regulatory T cells and immune tolerance[J]. Cell, 2008, 133(5): 775-787.
doi: 10.1016/j.cell.2008.05.009 pmid: 18510923 |
[27] |
DUHEN T, GOUGH M J, LEIDNER R S, et al. Development and therapeutic manipulation of the head and neck cancer tumor environment to improve clinical outcomes[J]. Front Oral Health, 2022, 3: 902160.
doi: 10.3389/froh.2022.902160 |
[28] |
DUHEN R, FESNEAU O, SAMSON K A, et al. PD-1 and ICOS coexpression identifies tumor-reactive CD4+ T cells in human solid tumors[J]. J Clin Invest, 2022, 132(12): e156821.
doi: 10.1172/JCI156821 |
[29] |
KATABATHULA R, JOSEPH P, SINGH S, et al. Multi-scale pan-cancer integrative analyses identify the STAT3-VSIR axis as a key immunosuppressive mechanism in head and neck cancer[J]. Clin Cancer Res, 2022, 28(5): 984-992.
doi: 10.1158/1078-0432.CCR-21-1978 |
[30] |
HEATH B R, GONG W, TANER H F, et al. Saturated fatty acids dampen the immunogenicity of cancer by suppressing STING[J]. Cell Rep, 2023, 42(4): 112303.
doi: 10.1016/j.celrep.2023.112303 |
[31] |
WALKER L S. Treg and CTLA-4: two intertwining pathways to immune tolerance[J]. J Autoimmun, 2013, 45: 49-57.
doi: 10.1016/j.jaut.2013.06.006 pmid: 23849743 |
[32] |
OU D, ADAM J, GARBERIS I, et al. Clinical relevance of tumor infiltrating lymphocytes, PD-L1 expression and correlation with HPV/p16 in head and neck cancer treated with bio- or chemo-radiotherapy[J]. Oncoimmunology, 2017, 6(9): e1341030.
doi: 10.1080/2162402X.2017.1341030 |
[33] |
JIE H B, GILDENER-LEAPMAN N, LI J, et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients[J]. Br J Cancer, 2013, 109(10): 2629-2635.
doi: 10.1038/bjc.2013.645 |
[34] |
WEN Y H, LIN H Q, LI H, et al. Stromal interleukin-33 promotes regulatory T cell-mediated immunosuppression in head and neck squamous cell carcinoma and correlates with poor prognosis[J]. Cancer Immunol Immunother, 2019, 68(2): 221-232.
doi: 10.1007/s00262-018-2265-2 |
[35] |
NIRSCHL C J, DRAKE C G. Molecular pathways: Coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy[J]. Clin Cancer Res, 2013, 19(18): 4917-4924.
doi: 10.1158/1078-0432.CCR-12-1972 pmid: 23868869 |
[36] |
MRIZAK D, MARTIN N, BARJON C, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells[J]. J Natl Cancer Inst, 2015, 107(1): 363.
doi: 10.1093/jnci/dju363 pmid: 25505237 |
[37] |
GADWA J, BICKETT T E, DARRAGH L B, et al. Complement C3a and C5a receptor blockade modulates regulatory T cell conversion in head and neck cancer[J]. J Immunother Cancer, 2021, 9(3): e002585.
doi: 10.1136/jitc-2021-002585 |
[38] |
ESCHWEILER S, RAMÍREZ-SUÁSTEGUI C, LI Y C, et al. Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs[J]. Nature, 2022, 605(7911): 741-746.
doi: 10.1038/s41586-022-04685-2 |
[39] |
CHUCKRAN C A, CILLO A R, MOSKOVITZ J, et al. Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer[J]. Sci Transl Med, 2021, 13(623): eabf8495.
doi: 10.1126/scitranslmed.abf8495 |
[40] |
RUTIHINDA C, HAROUN R, SAIDI N E, et al. Inhibition of the CCR6-CCL20 axis prevents regulatory T cell recruitment and sensitizes head and neck squamous cell carcinoma to radiation therapy[J]. Cancer Immunol Immunother, 2023, 72(5): 1089-1102.
doi: 10.1007/s00262-022-03313-2 |
[41] |
GONG L Q, LUO J, ZHANG Y, et al. Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction[J]. Nat Commun, 2023, 14(1): 1912.
doi: 10.1038/s41467-023-37614-6 pmid: 37024479 |
[42] |
KESKINOV A A, SHURIN M R. Myeloid regulatory cells in tumor spreading and metastasis[J]. Immunobiology, 2015, 220(2): 236-242.
doi: 10.1016/j.imbio.2014.07.017 pmid: 25178934 |
[43] |
BRONTE V, BRANDAU S, CHEN S H, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016, 7: 12150.
doi: 10.1038/ncomms12150 pmid: 27381735 |
[44] |
VASQUEZ-DUNDDEL D, PAN F, ZENG Q, et al. STAT3 regulates arginase-Ⅰ in myeloid-derived suppressor cells from cancer patients[J]. J Clin Invest, 2013, 123(4): 1580-1589.
doi: 10.1172/JCI60083 |
[45] |
GREENE S, ROBBINS Y, MYDLARZ W K, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models[J]. Clin Cancer Res, 2020, 26(6): 1420-1431.
doi: 10.1158/1078-0432.CCR-19-2625 pmid: 31848188 |
[46] |
ZHU G Q, YANG F, WEI H X, et al. 90 K increased delivery efficiency of extracellular vesicles through mediating internalization[J]. J Control Release, 2023, 353: 930-942.
doi: 10.1016/j.jconrel.2022.12.034 |
[47] |
XU Y L, YAN J X, TAO Y, et al. Pituitary hormone α-MSH promotes tumor-induced myelopoiesis and immunosuppression[J]. Science, 2022, 377(6610): 1085-1091.
doi: 10.1126/science.abj2674 pmid: 35926007 |
[48] |
PRASAD M, ZOREA J, JAGADEESHAN S, et al. MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer[J]. J Immunother Cancer, 2022, 10(3): e003917.
doi: 10.1136/jitc-2021-003917 |
[49] | GUAN L, NAMBIAR D K, CAO H B, et al. NFE2L2 mutations enhance radioresistance in head and neck cancer by modulating intratumoral myeloid cells[J]. Cancer Res, 2023, 83(6): 861-874. |
[50] |
VIVIER E, TOMASELLO E, BARATIN M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510.
doi: 10.1038/ni1582 pmid: 18425107 |
[51] |
MARTÍNEZ-LOSTAO L, ANEL A, PARDO J. How do cytotoxic lymphocytes kill cancer cells?[J]. Clin Cancer Res, 2015, 21(22): 5047-5056.
doi: 10.1158/1078-0432.CCR-15-0685 |
[52] |
FREEMAN A J, VERVOORT S J, RAMSBOTTOM K M, et al. Natural killer cells suppress T cell-associated tumor immune evasion[J]. Cell Rep, 2019, 28(11): 2784-2794.e5.
doi: S2211-1247(19)31050-2 pmid: 31509742 |
[53] |
VAN MONTFOORT N, BORST L, KORRER M J, et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines[J]. Cell, 2018, 175(7): 1744-1755.e15.
doi: 10.1016/j.cell.2018.10.028 |
[54] |
LUDWIG S, FLOROS T, THEODORAKI M N, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16): 4843-4854.
doi: 10.1158/1078-0432.CCR-16-2819 pmid: 28400428 |
[55] |
SHEN X, WANG P, DAI P, et al. Correlation between human leukocyte antigen-G expression and clinical parameters in oral squamous cell carcinoma[J]. Indian J Cancer, 2018, 55(4): 340-343.
doi: 10.4103/ijc.IJC_602_17 pmid: 30829267 |
[56] |
ANDRÉ P, DENIS C, SOULAS C, et al. Anti-NKG2A MAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells[J]. Cell, 2018, 175(7): 1731-1743.e13.
doi: S0092-8674(18)31322-9 pmid: 30503213 |
[57] |
RETICKER-FLYNN N E, ZHANG W R, BELK J A, et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis[J]. Cell, 2022, 185(11): 1924-1942.e23.
doi: 10.1016/j.cell.2022.04.019 |
[58] |
BERNAREGGI D, XIE Q, PRAGER B C, et al. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity[J]. Nat Commun, 2022, 13(1): 1899.
doi: 10.1038/s41467-022-29469-0 pmid: 35393416 |
[59] |
JUNG E K, CHU T H, VO M C, et al. Natural killer cells have a synergistic anti-tumor effect in combination with chemoradiotherapy against head and neck cancer[J]. Cytotherapy, 2022, 24(9): 905-915.
doi: 10.1016/j.jcyt.2022.05.004 pmid: 35778350 |
[60] |
LI X Y, CORVINO D, NOWLAN B, et al. NKG7 is required for optimal antitumor T-cell immunity[J]. Cancer Immunol Res, 2022, 10(2): 154-161.
doi: 10.1158/2326-6066.CIR-20-0649 |
[61] |
CRIST M, YANIV B, PALACKDHARRY S, et al. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition[J]. J Immunother Cancer, 2022, 10(11): e005632.
doi: 10.1136/jitc-2022-005632 |
[62] |
LEE Y M, CHEN Y H, OU D L, et al. SN-38, an active metabolite of irinotecan, enhances anti-PD-1 treatment efficacy in head and neck squamous cell carcinoma[J]. J Pathol, 2023, 259(4): 428-440.
doi: 10.1002/path.v259.4 |
[63] |
BOUTILIER A J, ELSAWA S F. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995.
doi: 10.3390/ijms22136995 |
[64] |
WEI C, YANG C G, WANG S Y, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64.
doi: 10.1186/s12943-019-0976-4 pmid: 30927925 |
[65] |
SHE L, QIN Y X, WANG J C, et al. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck[J]. Cancer Cell Int, 2018, 18: 120.
doi: 10.1186/s12935-018-0620-1 pmid: 30181713 |
[66] |
GAO L, ZHANG W, ZHONG W Q, et al. Tumor associated macrophages induce epithelial to mesenchymal transition via the EGFR/ERK1/2 pathway in head and neck squamous cell carcinoma[J]. Oncol Rep, 2018, 40(5): 2558-2572.
doi: 10.3892/or.2018.6657 pmid: 30132555 |
[67] |
HU Y, HE M Y, ZHU L F, et al. Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2016, 35: 12.
doi: 10.1186/s13046-015-0281-z |
[68] |
SUN H, MIAO C, LIU W, et al. TGF-β1/TβRⅡ/Smad3 signaling pathway promotes VEGF expression in oral squamous cell carcinoma tumor-associated macrophages[J]. Biochem Biophys Res Commun, 2018, 497(2): 583-590.
doi: 10.1016/j.bbrc.2018.02.104 |
[69] |
HU Z W, WEN Y H, MA R Q, et al. Ferroptosis driver SOCS1 and suppressor FTH1 independently correlate with M1 and M2 macrophage infiltration in head and neck squamous cell carcinoma[J]. Front Cell Dev Biol, 2021, 9: 727762.
doi: 10.3389/fcell.2021.727762 |
[70] | MOREIRA D, SAMPATH S, WON H, et al. Myeloid cell-targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell-mediated immunity[J]. J Clin Invest, 2021, 131(2): 137001. |
[1] | 王梓霏, 丁雅卉, 李彦, 栾鑫, 汤忞. 生物3D打印在肿瘤研究及组织工程中的应用[J]. 中国癌症杂志, 2024, 34(9): 814-826. |
[2] | 王蔓莉, 陈辉, 段智, 许奇美, 李贞. 普列克底物蛋白2/miR-196a信号轴介导肿瘤微环境中肺癌细胞的通讯机制研究[J]. 中国癌症杂志, 2024, 34(7): 628-638. |
[3] | 王小聪, 李明. 单细胞测序在口腔鳞状细胞癌研究中的价值[J]. 中国癌症杂志, 2024, 34(5): 501-508. |
[4] | 郭晔, 张陈平. 复发/转移性头颈部鳞癌免疫检查点抑制剂治疗专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(4): 425-438. |
[5] | 黄鹤, 鞠侯雨, 杨文艺, 严明, 任国欣, 胡镜宙. PD-L2在头颈部鳞状细胞癌免疫治疗预后评估中的意义[J]. 中国癌症杂志, 2023, 33(6): 613-618. |
[6] | 薛影, 毛蕴玉, 徐建青. 用于实体瘤治疗的缺氧敏感型CAR-T细胞的研究进展[J]. 中国癌症杂志, 2023, 33(1): 71-77. |
[7] | 许婷婷, 胡超苏, 李宝生. 抗EGFR单抗治疗局部晚期头颈部鳞状细胞癌临床共识(2023年版)[J]. 中国癌症杂志, 2023, 33(1): 81-94. |
[8] | 刘强, 方仪, 王靖. 单细胞测序技术在乳腺癌研究中的应用进展[J]. 中国癌症杂志, 2022, 32(7): 635-642. |
[9] | 宿佳琦, 徐文浩, 田熙, 艾合太木江·安外尔, 瞿元元, 施国海, 张海梁, 叶定伟. 肾透明细胞癌联合免疫治疗新策略——有氧糖酵解的研究进展及展望[J]. 中国癌症杂志, 2022, 32(4): 287-297. |
[10] | 周术奎, 张东亮, 王翔, 刘磊, 李曾, 杨盛柯, 廖洪. 利用细胞膜片技术构建新型前列腺癌皮下移植瘤动物模型[J]. 中国癌症杂志, 2022, 32(3): 200-206. |
[11] | 李 崴, 张山岭, 陶英杰, 王旭东. T细胞免疫代谢调控与免疫检查点抑制剂联合应用的现状及研究进展[J]. 中国癌症杂志, 2021, 31(7): 640-646. |
[12] | 郭 晔, 张陈平 . 抗EGFR单抗治疗复发/转移性头颈部鳞状细胞癌临床共识(2021年版)[J]. 中国癌症杂志, 2021, 31(12): 1220-1232. |
[13] | 韩香臣, 李小光, 胡 欣. 单细胞转录组测序及其在乳腺癌中的应用[J]. 中国癌症杂志, 2021, 31(11): 1110-1114. |
[14] | 邱晓阳 , 王少洪 , 郑 璟 , 吴 璇 , 王媛媛 , 刘 君 , 叶才果 . 免疫细胞化学p16/Ki-67双染检测对宫颈细胞 学阴性且HR-HPV阳性病例的分流作用及组织学LSIL的转归预测价值[J]. 中国癌症杂志, 2020, 30(7): 512-518. |
[15] | 蒋梦怡 , 陆言巧 , 王红霞 . 乳腺癌异质性的研究进展及临床意义[J]. 中国癌症杂志, 2020, 30(5): 394-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn