[1] |
FRIDMAN W H, PAGÈS F, SAUTÈS-FRIDMAN C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306.
doi: 10.1038/nrc3245
pmid: 22419253
|
[2] |
SALGADO R, DENKERT C, DEMARIA S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014[J]. Ann Oncol, 2015, 26(2): 259-271.
doi: 10.1093/annonc/mdu450
pmid: 25214542
|
[3] |
ORHAN A, VOGELSANG R P, ANDERSEN M B, et al. The prognostic value of tumour-infiltrating lymphocytes in pancreatic cancer: a systematic review and meta-analysis[J]. Eur J Cancer, 2020, 132: 71-84.
doi: S0959-8049(20)30154-4
pmid: 32334338
|
[4] |
FU Q F, CHEN N, GE C L, et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis[J]. Oncoimmunology, 2019, 8(7): 1593806.
|
[5] |
ALLARD M A, BACHET J B, BEAUCHET A, et al. Linear quantification of lymphoid infiltration of the tumor margin: a reproducible method, developed with colorectal cancer tissues, for assessing a highly variable prognostic factor[J]. Diagn Pathol, 2012, 7: 156.
|
[6] |
ROBINS H S, ERICSON N G, GUENTHOER J, et al. Digital genomic quantification of tumor-infiltrating lymphocytes[J]. Sci Transl Med, 2013, 5(214): 214ra169.
|
[7] |
ERIKSEN A C, ANDERSEN J B, KRISTENSSON M, et al. Computer-assisted stereology and automated image analysis for quantification of tumor infiltrating lymphocytes in colon cancer[J]. Diagn Pathol, 2017, 12(1): 65.
doi: 10.1186/s13000-017-0653-0
pmid: 28851404
|
[8] |
YIN Y D, ROTHENBERG E. Probing the spatial organization of molecular complexes using triple-pair-correlation[J]. Sci Rep, 2016, 6: 30819.
doi: 10.1038/srep30819
pmid: 27545293
|
[9] |
CORREDOR G, WANG X X, LU C, et al. A watershed and feature-based approach for automated detection of lymphocytes on lung cancer images[C]// SPIE Medical Imaging. Proc SPIE 10581, Medical Imaging 2018:Digital Pathology, Houston, Texas, USA. 2018, 10581: 213-218.
|
[10] |
BASAVANHALLY A N, GANESAN S, AGNER S, et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology[J]. IEEE Trans Biomed Eng, 2010, 57(3): 642-653.
|
[11] |
KUO Y L, KO C C, LEE M J. Lymphatic infiltration detection in breast cancer H-E image prior to lymphadenectomy[J]. Biomed Eng Appl Basis Commun, 2014, 26(4): 1440007.
|
[12] |
WANG S D, WANG T, YANG L, et al. ConvPath: a software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network[J]. EBioMedicine, 2019, 50: 103-110.
doi: S2352-3964(19)30703-0
pmid: 31767541
|
[13] |
WOUTERS M C, KOMDEUR F L, WORKEL H H, et al. Treatment regimen, surgical outcome, and T-cell differentiation influence prognostic benefit of tumor-infiltrating lymphocytes in high-grade serous ovarian cancer[J]. Clin Cancer Res, 2016, 22(3): 714-724.
doi: 10.1158/1078-0432.CCR-15-1617
pmid: 26384738
|