中国癌症杂志 ›› 2022, Vol. 32 ›› Issue (11): 1105-1114.doi: 10.19401/j.cnki.1007-3639.2022.11.009
收稿日期:
2022-03-15
修回日期:
2022-05-07
出版日期:
2022-11-30
发布日期:
2022-12-14
通信作者:
沈波
作者简介:
王若彤(ORCID: 0000-0002-0485-6848),硕士在读。
WANG Ruotong(), WANG Xin, SHEN Bo(
)
Received:
2022-03-15
Revised:
2022-05-07
Published:
2022-11-30
Online:
2022-12-14
Contact:
SHEN Bo
文章分享
摘要:
随着精准医学概念的提出,肿瘤作为一类高度异质性的疾病,其个体化治疗已成为精准医学的一个关键领域也受到更多关注。近期提出的类器官模型为肿瘤的基础研究和个体化治疗带来了新突破。类器官指从干细胞或器官祖细胞来源,以类似体内细胞分化的方式组织成的器官特异性的细胞集合。肿瘤类器官指利用原代恶性细胞经过体外3D培养构建的恶性细胞团,在体外培养条件下可持续增殖,一定程度上保留了原代肿瘤的病理学形态特征、基因组与转录组特征、药物敏感性及恶性细胞间异质性,为体外肿瘤研究提供了新方法,尤其在预测患者药物敏感性、药物高通量筛选等方面有巨大潜力,为肿瘤个体化治疗作出了贡献。但该模型仍存在不足,如无法重现体内肿瘤微环境等,使其在临床等方面的应用受限。目前将肿瘤类器官与其他肿瘤成分共培养、与微流控设备和生物打印技术等联合应用将有望弥补其缺陷、突破肿瘤治疗领域的瓶颈。本文将常用肿瘤研究模型的特点进行对比,总结部分肿瘤类器官的培养方法,并描述了肿瘤类器官的临床相关应用,最后对其与其他技术联合应用进行了叙述,并对未来肿瘤类器官的发展方向予以展望。
中图分类号:
王若彤, 王欣, 沈波. 类器官在肿瘤转化医学中的应用和进展[J]. 中国癌症杂志, 2022, 32(11): 1105-1114.
WANG Ruotong, WANG Xin, SHEN Bo. Application and progress of organoids in tumor translational medicine[J]. China Oncology, 2022, 32(11): 1105-1114.
表1
恶性肿瘤常用模型比较"
Item | Cancer cell line | PDX | Tumor spheroid | Organoid |
---|---|---|---|---|
Tumor microenvironment | No | Limited | No | No |
Physiologic representation | Limited | Semiphysiologic | Limited | Semiphysiologic |
Difficulty | Easy | Hard | Easy | Easy |
Repopulation activity | Good | Medium | Poor | Good |
Genome editing | Yes | No | Yes | Yes |
High-throughput screening | Yes | No | Yes | Yes |
Tumor heterogeneity | No | Yes | No | Yes |
Library establishment | Yes | Limited | Yes | Yes |
表2
常见的类器官培养基成分概述"
Tumor | Author and reference | Purposes | Key resources | Buffers/media | Nultrition | Antibiotic | Supplements | Others |
---|---|---|---|---|---|---|---|---|
Lung cancer | Shi R,et al[ | Drug response including targeting drugs; Establishing a platform | Advanced DMEM/F12, glutamax, HEPES, antibiotic-antimycotic, B-27 supplement, N-acetylcysteine, rec. hEGF, rec. hFGF-10, rec. hFGF-4, rec. hNoggin, SAG (smoothened ligand), A83-01 (TGF-b receptor inhibitor), Y-27632, CHIR 99021(GSK-3 inhibitor) | Advanced DMEM/F12, HEPES | GlutaMAX, B-27 supplement, N-acetylcysteine | Antibiotic-antimycotic | Rec. hEGF, rec. hFGF-10, rec. hFGF-4, rec. hNoggin, SAG (smoothened ligand) | A83-01 (TGF-b receptor inhibitor), Y-27632, CHIR 99021 (GSK-3 inhibitor) |
Liver cancer | Broutier L, et al[ | Prognosis indicators; drug susceptibility prediction; Identification of new targets | Advanced DMEM/F12, 1% penicillin/streptomycin, 1% glutamax, HEPES, B27 supplement (without vitamin A), N2 supplement, N-acetylcysteine, R-spondin1 (conditioned medium), nicotinamide, rec. h[Leu15]-gastrin Ⅰ, rec. hEGF, rec. hFGF10, rec. hHGF, forskolin (CAMP inhibitor), A8301, Y27632 (remove after passaging) and dexamethasone (remove after passaging) | Advanced DMEM/F12, HEPES | 1% glutamax, B27 supplement (without vitamin A), N2 supplement, N-acetylcysteine, R-spondin1 (conditioned medium), nicotinamide | 1% Penicillin/Streptomycin | Rec. h[Leu15]-gastrin Ⅰ, rec. hEGF, rec. hFGF10, rec. hHGF | Forskolin (CAMP inhibitor), A8301, Y27632 (remove after passaging) and dexamethasone (remove after passaging) |
Rectal cancer | Ganesh K, et al[ | Establishing a platform, radiotherapy, chemotherapy and targeted drug response prediction | Advanced DMEM/F12 supplemented with antibiotic-antimycotic, B27, N2, glutamax, gastrin Ⅰ, HEPES, N-acetylcysteine, nicotinamide, 50% Wnt-3A (conditioned medium and remove after passaging), 20% R-spondin-1 (conditioned medium and remove after passaging), rec. mNoggin (remove after passaging), rec. hEGF, A83-01, SB202190 | advanced DMEM/F12, HEPES | B27, N2, glutamax, N-acetylcysteine, nicotinamide | Antibiotic-antimycotic | Gastrin Ⅰ, 50% Wnt-3A (conditioned medium and remove after passaging), 20% R-spondin-1 (conditioned medium and remove after passaging), rec. mNoggin (and remove after passaging), rec. hEGF | A83-01, SB202190 |
Gastric cancer | Bartfeld S, et al[ | Culture protocol, modeling organogenesis | Advanced DMEM/F12 supplemented with penicillin/ streptomycin, HEPES, glutamax, B27, N-acetylcysteine, EGF, Noggin (conditioned medium) 10%, R-spondin1 (conditioned medium) 10%, Wnt (conditioned medium) 50%, FGF10, gastrin, TGF-βi (A-83-01). nicotinamide*, RHOKi (Y-27632), IGF*, p38 inhibitor (SB202190)*, GSK3β inhibitor (CHIR99021)*, PGE2* | advanced DMEM/F12, HEPES | Glutamax, B27, N-Acetylcysteine | Penicillin/streptomycin | EGF, Noggin conditioned medium 10%, 10% R-spondin1 (conditioned medium), 50% Wnt (conditioned medium), FGF10, gastrin, IGF* | TGFβi (A-83-01), RHOKi (Y-27632), p38 inhibitor (SB202190)*, GSK3β inhibitor (CHIR99021)*, PGE2* |
Gastric cancer | Yan H H N, et al[ | Tumor heterogeneity; drug susceptibility prediction | Modifying the medium of Bartfeld S by adding nutlin-3a (p53/MDM2 inhibitor) | advanced DMEM/F12, HEPES | Glutamax, B28, N-Acetylcysteine | Penicillin/streptomycin | Rec. hEGF, rec. hFGF10, Wnt3A (conditioned medium), R-spondin1 (conditioned medium), Noggin (conditioned medium) | Nutlin-3a (p53/MDM2 inhibitor) |
Pancreatic cancer | Tiriac H,et al[ | Biomarker, genome character, prognosis, drug response prediction | Advanced DMEM/F12, HEPES, glutamax, A83-01, hEGF, mNoggin, hFGF10, hgastrin Ⅰ, N-acetylcysteine, nicotinamide, PGE2, B27 supplement, R-spondin1 (conditioned media), Afamin/Wnt3A (conditioned media) | Advanced DMEM/F12, HEPES | Glutamax, N-acety-lcysteine, nicotinamide, B27 supplement | NM | Rec. hEGF, Afamin/Wnt3A, rec. hFGF10, rec. hgastrin I, PGE2, R-spondin1 (conditioned media), Afamin/Wnt3A (conditioned media) | A83-01 |
Prostate cancer | Chua C W, et al[ | Modeling prostate organoid | Hepatocyte culture medium, EGF, Y-27632, glutamax, 5% activated carbon stripped FBS | Hepatocyte culture medium | 5% activated carbon stripped FBS, glutamax | NM | EGF | Y-27632 |
Bladder cancer | Lee S H,et al[ | Establish PDO biobank and describe character | Hepatocyte culture medium, EGF, Y-27632, glutamax, 5% activated carbon stripped FBS | Hepatocyte culture medium | 5% activated carbon stripped FBS, glutamax | NM | EGF | Y-27632 |
[1] |
FUJII M, SHIMOKAWA M, DATE S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis[J]. Cell Stem Cell, 2016, 18(6): 827-838.
doi: 10.1016/j.stem.2016.04.003 pmid: 27212702 |
[2] |
LESAVAGE B L, SUHAR R A, BROGUIERE N, et al. Next-generation cancer organoids[J]. Nat Mater, 2022, 21(2): 143-159.
doi: 10.1038/s41563-021-01057-5 |
[3] |
LYNCH T J, BELL D W, SORDELLA R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib[J]. N Engl J Med, 2004, 350(21): 2129-2139.
doi: 10.1056/NEJMoa040938 |
[4] |
MAEMONDO M, INOUE A, KOBAYASHI K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR[J]. N Engl J Med, 2010, 362(25): 2380-2388.
doi: 10.1056/NEJMoa0909530 |
[5] |
SALMANINEJAD A, VALILOU S F, SHABGAH A G, et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy[J]. J Cell Physiol, 2019, 234(10): 16824-16837.
doi: 10.1002/jcp.28358 pmid: 30784085 |
[6] |
VAN MEERBEECK J P, FENNELL D A, DE RUYSSCHER D K. Small-cell lung cancer[J]. Lancet, 2011, 378(9804): 1741-1755.
doi: 10.1016/S0140-6736(11)60165-7 pmid: 21565397 |
[7] |
FIEBIG H H, SCHUCHHARDT C, HENSS H, et al. Comparison of tumor response in nude mice and in the patients[J]. Behring Inst Mitt, 1984(74): 343-352.
pmid: 6477362 |
[8] |
SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5): 1762-1772.
doi: 10.1053/j.gastro.2011.07.050 pmid: 21889923 |
[9] | KIM S C, PARK J W, SEO H Y, et al. Multifocal organoid capturing of colon cancer reveals pervasive intratumoral heterogenous drug responses[J]. Adv Sci (Weinh), 2022, 9(5): e2103360. |
[10] |
DAI X F, CHENG H Y, BAI Z H, et al. Breast cancer cell line classification and its relevance with breast tumor subtyping[J]. J Cancer, 2017, 8(16): 3131-3141.
doi: 10.7150/jca.18457 pmid: 29158785 |
[11] |
BEN-DAVID U, BEROUKHIM R, GOLUB T R. Genomic evolution of cancer models: perils and opportunities[J]. Nat Rev Cancer, 2019, 19(2): 97-109.
doi: 10.1038/s41568-018-0095-3 |
[12] | BLEIJS M, VAN DE WETERING M, CLEVERS H, et al. Xenograft and organoid model systems in cancer research[J]. EMBO J, 2019, 38(15): e101654. |
[13] |
HOU X Y, DU C, LU L G, et al. Opportunities and challenges of patient-derived models in cancer research: patient-derived xenografts, patient-derived organoid and patient-derived cells[J]. World J Surg Oncol, 2022, 20(1): 37.
doi: 10.1186/s12957-022-02510-8 pmid: 35177071 |
[14] |
WEEBER F, OOFT S N, DIJKSTRA K K, et al. Tumor organoids as a pre-clinical cancer model for drug discovery[J]. Cell Chem Biol, 2017, 24(9): 1092-1100.
doi: S2451-9456(17)30226-X pmid: 28757181 |
[15] |
BEN-DAVID U, HA G, TSENG Y Y, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nat Genet, 2017, 49(11): 1567-1575.
doi: 10.1038/ng.3967 |
[16] |
ISHIGURO T, OHATA H, SATO A, et al. Tumor-derived spheroids: relevance to cancer stem cells and clinical applications[J]. Cancer Sci, 2017, 108(3): 283-289.
doi: 10.1111/cas.13155 |
[17] |
WEISWALD L B, BELLET D, DANGLES-MARIE V. Spherical cancer models in tumor biology[J]. Neoplasia, 2015, 17(1): 1-15.
doi: 10.1016/j.neo.2014.12.004 |
[18] |
BOUCHERIT N, GORVEL L, OLIVE D. 3D tumor models and their use for the testing of immunotherapies[J]. Front Immunol, 2020, 11: 603640.
doi: 10.3389/fimmu.2020.603640 |
[19] | GILAZIEVA Z, PONOMAREV A, RUTLAND C, et al. Promising applications of tumor spheroids and organoids for personalized medicine[J]. Cancers (Basel), 2020, 12(10): E2727. |
[20] |
SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265.
doi: 10.1038/nature07935 |
[21] |
ZUMWALDE N A, HAAG J D, SHARMA D, et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals Vδ2+ T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate[J]. Cancer Prev Res (Phila), 2016, 9(4): 305-316.
doi: 10.1158/1940-6207.CAPR-15-0370-T |
[22] |
BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12): 1424-1435.
doi: 10.1038/nm.4438 pmid: 29131160 |
[23] |
SEINO T, KAWASAKI S, SHIMOKAWA M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression[J]. Cell Stem Cell, 2018, 22(3): 454-467.e6.
doi: S1934-5909(17)30510-6 pmid: 29337182 |
[24] |
GROSSMAN J E, MUTHUSWAMY L, HUANG L, et al. Organoid sensitivity correlates with therapeutic response in patients with pancreatic cancer[J]. Clin Cancer Res, 2022, 28(4): 708-718.
doi: 10.1158/1078-0432.CCR-20-4116 |
[25] |
GANESH K, WU C, O'ROURKE K P, et al. A rectal cancer organoid platform to study individual responses to chemoradiation[J]. Nat Med, 2019, 25(10): 1607-1614.
doi: 10.1038/s41591-019-0584-2 pmid: 31591597 |
[26] |
VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691 |
[27] |
LI X D, FRANCIES H E, SECRIER M, et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics[J]. Nat Commun, 2018, 9(1): 2983.
doi: 10.1038/s41467-018-05190-9 pmid: 30061675 |
[28] |
CALANDRINI C, SCHUTGENS F, OKA R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity[J]. Nat Commun, 2020, 11(1): 1310.
doi: 10.1038/s41467-020-15155-6 pmid: 32161258 |
[29] |
GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187.
doi: S0092-8674(14)01047-2 pmid: 25201530 |
[30] |
KIM M, MUN H, SUNG C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nat Commun, 2019, 10(1): 3991.
doi: 10.1038/s41467-019-11867-6 pmid: 31488816 |
[31] |
YAN H H N, SIU H C, LAW S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6): 882-897.e11.
doi: S1934-5909(18)30480-6 pmid: 30344100 |
[32] |
SEIDLITZ T, MERKER S R, ROTHE A, et al. Human gastric cancer modelling using organoids[J]. Gut, 2019, 68(2): 207-217.
doi: 10.1136/gutjnl-2017-314549 pmid: 29703791 |
[33] |
STEELE N G, CHAKRABARTI J, WANG J, et al. An organoid-based preclinical model of human gastric cancer[J]. Cell Mol Gastroenterol Hepatol, 2019, 7(1): 161-184.
doi: S2352-345X(18)30130-9 pmid: 30522949 |
[34] |
LEE S H, HU W H, MATULAY J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2): 515-528.e17.
doi: S0092-8674(18)30297-6 pmid: 29625057 |
[35] |
DROST J, VAN JAARSVELD R H, PONSIOEN B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550): 43-47.
doi: 10.1038/nature14415 |
[36] |
LO Y H, KOLAHI K S, DU Y H, et al. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation[J]. Cancer Discov, 2021, 11(6): 1562-1581.
doi: 10.1158/2159-8290.CD-20-1109 |
[37] |
WERNER R S, KIRSCHNER M B, OPITZ I. Primary lung cancer organoids for personalized medicine-are they ready for clinical use?[J]. Cancers, 2021, 13(19): 4832.
doi: 10.3390/cancers13194832 |
[38] |
AISENBREY E A, MURPHY W L. Synthetic alternatives to matrigel[J]. Nat Rev Mater, 2020, 5(7): 539-551.
doi: 10.1038/s41578-020-0199-8 pmid: 32953138 |
[39] |
MAHAPATRA C, LEE R D, PAUL M K. Emerging role and promise of nanomaterials in organoid research[J]. Drug Discov Today, 2022, 27(3): 890-899.
doi: 10.1016/j.drudis.2021.11.007 |
[40] |
SHI R, RADULOVICH N, NG C, et al. Organoid cultures as preclinical models of non-small cell lung cancer[J]. Clin Cancer Res, 2020, 26(5): 1162-1174.
doi: 10.1158/1078-0432.CCR-19-1376 pmid: 31694835 |
[41] |
BARTFELD S, BAYRAM T, VAN DE WETERING M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection[J]. Gastroenterology, 2015, 148(1): 126-136.e6.
doi: 10.1053/j.gastro.2014.09.042 pmid: 25307862 |
[42] |
TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discov, 2018, 8(9): 1112-1129.
doi: 10.1158/2159-8290.CD-18-0349 pmid: 29853643 |
[43] |
CHUA C W, SHIBATA M, LEI M, et al. Single luminal epithelial progenitors can generate prostate organoids in culture[J]. Nat Cell Biol, 2014, 16(10): 951-961.
doi: 10.1038/ncb3047 pmid: 25241035 |
[44] |
WONG C H, SIAH K W, LO A W. Estimation of clinical trial success rates and related parameters[J]. Biostatistics, 2019, 20(2): 273-286.
doi: 10.1093/biostatistics/kxx069 pmid: 29394327 |
[45] |
CHEN B Z, DODGE M E, TANG W, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer[J]. Nat Chem Biol, 2009, 5(2): 100-107.
doi: 10.1038/nchembio.137 pmid: 19125156 |
[46] |
VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378): 920-926.
doi: 10.1126/science.aao2774 pmid: 29472484 |
[47] |
MUN S J, RYU J S, LEE M O, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids[J]. J Hepatol, 2019, 71(5): 970-985.
doi: S0168-8278(19)30402-7 pmid: 31299272 |
[48] |
SKARDAL A, ALEMAN J, FORSYTHE S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems[J]. Biofabrication, 2020, 12(2): 025017.
doi: 10.1088/1758-5090/ab6d36 |
[49] |
CZERNIECKI S M, CRUZ N M, HARDER J L, et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping[J]. Cell Stem Cell, 2018, 22(6): 929-940.e4.
doi: S1934-5909(18)30216-9 pmid: 29779890 |
[50] |
BROOKS A, LIANG X W, ZHANG Y L, et al. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment[J]. Pharmacol Res, 2021, 169: 105608.
doi: 10.1016/j.phrs.2021.105608 |
[51] |
YAO Y, XU X Y, YANG L F, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1): 17-26.e6.
doi: S1934-5909(19)30431-X pmid: 31761724 |
[52] |
SCHUMACHER D, ANDRIEUX G, BOEHNKE K, et al. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures[J]. PLoS Genet, 2019, 15(3): e1008076.
doi: 10.1371/journal.pgen.1008076 |
[53] |
CORRÒ C, NOVELLASDEMUNT L, LI V S W. A brief history of organoids[J]. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165.
doi: 10.1152/ajpcell.00120.2020 |
[54] |
FIORINI E, VEGHINI L, CORBO V. Modeling cell communication in cancer with organoids: making the complex simple[J]. Front Cell Dev Biol, 2020, 8: 166.
doi: 10.3389/fcell.2020.00166 pmid: 32258040 |
[55] |
ÖHLUND D, HANDLY-SANTANA A, BIFFI G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596.
doi: 10.1084/jem.20162024 |
[56] |
MARUSYK A, TABASSUM D P, JANISZEWSKA M, et al. Spatial proximity to fibroblasts impacts molecular features and therapeutic sensitivity of breast cancer cells influencing clinical outcomes[J]. Cancer Res, 2016, 76(22): 6495-6506.
doi: 10.1158/0008-5472.CAN-16-1457 pmid: 27671678 |
[57] |
DIJKSTRA K K, CATTANEO C M, WEEBER F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6): 1586-1598.e12.
doi: S0092-8674(18)30903-6 pmid: 30100188 |
[58] |
SAHIN U. Studying tumor-ReacTive T cells: a personalized organoid model[J]. Cell Stem Cell, 2018, 23(3): 318-319.
doi: S1934-5909(18)30400-4 pmid: 30193129 |
[59] |
SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491): 181-189.
doi: 10.1038/nature13118 |
[60] |
VUNJAK-NOVAKOVIC G, RONALDSON-BOUCHARD K, RADISIC M. Organs-on-a-chip models for biological research[J]. Cell, 2021, 184(18): 4597-4611.
doi: 10.1016/j.cell.2021.08.005 |
[61] |
HSU T H, KAO Y L, LIN W L, et al. The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip[J]. Integr Biol (Camb), 2012, 4(2): 177-182.
doi: 10.1039/C2IB00112H |
[62] |
JIN Y, KIM J, LEE J S, et al. Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform[J]. Adv Funct Mater, 2018, 28(37): 1801954.
doi: 10.1002/adfm.201801954 |
[63] |
LITTLE M H, COMBES A N. Kidney organoids: accurate models or fortunate accidents[J]. Genes Dev, 2019, 33(19/20): 1319-1345.
doi: 10.1101/gad.329573.119 |
[64] |
BRASSARD J A, NIKOLAEV M, HÜBSCHER T, et al. Recapitulating macro-scale tissue self-organization through organoid bioprinting[J]. Nat Mater, 2021, 20(1): 22-29.
doi: 10.1038/s41563-020-00803-5 pmid: 32958879 |
[65] |
LAWLOR K T, VANSLAMBROUCK J M, HIGGINS J W, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nat Mater, 2021, 20(2): 260-271.
doi: 10.1038/s41563-020-00853-9 pmid: 33230326 |
[66] | JIANG S W, ZHAO H R, ZHANG W J, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity[J]. Cell Rep Med, 2020, 1(9): 100161. |
[1] | 王梓霏, 丁雅卉, 李彦, 栾鑫, 汤忞. 生物3D打印在肿瘤研究及组织工程中的应用[J]. 中国癌症杂志, 2024, 34(9): 814-826. |
[2] | 徐睿, 王泽浩, 吴炅. 肿瘤相关中性粒细胞在乳腺癌发生、发展中的作用研究进展[J]. 中国癌症杂志, 2024, 34(9): 881-889. |
[3] | 葛祖荫, 宋坤, 林云霄, 钟烨凌, 郝敬铎. 循环肿瘤细胞FCGBP和BIGH3作为结直肠癌潜在生物标志物的可行性研究[J]. 中国癌症杂志, 2024, 34(8): 745-752. |
[4] | 肖毅, 吴名, 姚刚. 肿瘤类器官研究现状与展望[J]. 中国癌症杂志, 2024, 34(8): 763-776. |
[5] | 中国抗癌协会肿瘤整体评估专业委员会, 福建省抗癌协会癌痛专业委员会. 奥沙利铂超敏反应全程管理中国专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(8): 785-805. |
[6] | 王蔓莉, 陈辉, 段智, 许奇美, 李贞. 普列克底物蛋白2/miR-196a信号轴介导肿瘤微环境中肺癌细胞的通讯机制研究[J]. 中国癌症杂志, 2024, 34(7): 628-638. |
[7] | 潘剑, 叶定伟, 朱耀, 王备合. 激素敏感性前列腺癌患者中PSMA PET/CT衍生参数与循环肿瘤DNA特征之间的相关性分析[J]. 中国癌症杂志, 2024, 34(7): 680-685. |
[8] | 梁滢昀, 陈健华. 溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展[J]. 中国癌症杂志, 2024, 34(7): 686-694. |
[9] | 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560. |
[10] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[11] | 胡飞翔, 童彤, 彭卫军. 二维MXenes材料在肿瘤诊疗中的最新进展及展望[J]. 中国癌症杂志, 2024, 34(6): 598-606. |
[12] | 王小聪, 李明. 单细胞测序在口腔鳞状细胞癌研究中的价值[J]. 中国癌症杂志, 2024, 34(5): 501-508. |
[13] | 辛美仪, 林玉红, 赵凯. 肿瘤mRNA疫苗及其递送载体在抗肿瘤免疫治疗中的研究进展[J]. 中国癌症杂志, 2024, 34(5): 509-516. |
[14] | 许永虎, 徐大志. 21世纪以来胃癌治疗进展及未来展望[J]. 中国癌症杂志, 2024, 34(3): 239-249. |
[15] | 李晶, 郑磊, 高钰. 曲妥珠单抗辅助改良DOF双周方案对顺铂耐药的胃癌患者血清肿瘤标志物及生存率的影响分析[J]. 中国癌症杂志, 2024, 34(3): 286-292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn