[1] |
SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265.
|
[2] |
BOJ S F, HWANG C I, BAKER L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338.
|
[3] |
BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12): 1424-1435.
doi: 10.1038/nm.4438
pmid: 29131160
|
[4] |
CHO J, LEE H, RAH W, et al. From engineered heart tissue to cardiac organoid[J]. Theranostics, 2022, 12(6): 2758-2772.
doi: 10.7150/thno.67661
pmid: 35401829
|
[5] |
KIM M, MUN H, SUNG C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nat Commun, 2019, 10(1): 3991.
|
[6] |
SCHUTGENS F, ROOKMAAKER M B, MARGARITIS T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling[J]. Nat Biotechnol, 2019, 37(3): 303-313.
doi: 10.1038/s41587-019-0048-8
pmid: 30833775
|
[7] |
SALEWSKIJ K, PENNINGER J M. Blood vessel organoids for development and disease[J]. Circ Res, 2023, 132(4): 498-510.
doi: 10.1161/CIRCRESAHA.122.321768
pmid: 36795852
|
[8] |
DENG J, ZHANG J, GAO K, et al. Human-induced pluripotent stem cell-derived cerebral organoid of leukoencephalopathy with vanishing white matter[J]. CNS Neurosci Ther, 2023, 29(4): 1049-1066.
doi: 10.1111/cns.14079
pmid: 36650674
|
[9] |
DA COSTA B L, LI Y, LEVI S R, et al. Generation of CRB1 RP patient-derived iPSCs and a CRISPR/Cas9-mediated homology-directed repair strategy for the CRB1 c.2480G>T mutation[J]. Adv Exp Med Biol, 2023, 1415: 571-576.
|
[10] |
SAJJAD H, IMTIAZ S, NOOR T, et al. Cancer models in preclinical research: a chronicle review of advancement in effective cancer research[J]. Animal Model Exp Med, 2021, 4(2): 87-103.
doi: 10.1002/ame2.12165
pmid: 34179717
|
[11] |
HUCH M, BONFANTI P, BOJ S F, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis[J]. EMBO J, 2013, 32(20): 2708-2721.
|
[12] |
GREGGIO C, FRANCESCHI F D, FIGUEIREDO-LARSEN M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro[J]. Development, 2013, 140(21): 4452-4462.
|
[13] |
TIRIAC H, BUCOBO J C, TZIMAS D, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment[J]. Gastrointest Endosc, 2018, 87(6): 1474-1480.
doi: S0016-5107(18)30019-1
pmid: 29325707
|
[14] |
CHOI W, KIM Y H, WOO S M, et al. Establishment of patient-derived organoids using ascitic or pleural fluid from cancer patients[J]. Cancer Res Treat, 2023, 55(4): 1077-1086.
doi: 10.4143/crt.2022.1630
pmid: 37309112
|
[15] |
PISHVAIAN M J, BENDER R J, HALVERSON D, et al. Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative[J]. Clin Cancer Res, 2018, 24(20): 5018-5027.
doi: 10.1158/1078-0432.CCR-18-0531
pmid: 29954777
|
[16] |
Cancer Genome Atlas Research Network Electronic Address: Andrew_Aguirre@Dfci Harvard Edu, Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2017, 32(2): 185-203.e13.
doi: S1535-6108(17)30299-4
pmid: 28810144
|
[17] |
HE J, BLAIR A B, GROOT V P, et al. Is a pathological complete response following neoadjuvant chemoradiation associated with prolonged survival in patients with pancreatic cancer?[J]. Ann Surg, 2018, 268(1): 1-8.
doi: 10.1097/SLA.0000000000002672
pmid: 29334562
|
[18] |
SEPPÄLÄ T T, ZIMMERMAN J W, SERENI E, et al. Patient-derived organoid pharmacotyping is a clinically tractable strategy for precision medicine in pancreatic cancer[J]. Ann Surg, 2020, 272(3): 427-435.
|
[19] |
VAES R D W, VAN DIJK D P J, WELBERS T T J, et al. Generation and initial characterization of novel tumour organoid models to study human pancreatic cancer-induced cachexia[J]. J Cachexia Sarcopenia Muscle, 2020, 11(6): 1509-1524.
doi: 10.1002/jcsm.12627
pmid: 33047901
|
[20] |
CHOI S H, PARK S H, KIM K W, et al. Progression of unresected intraductal papillary mucinous neoplasms of the pancreas to cancer: a systematic review and Meta-analysis[J]. Clin Gastroenterol Hepatol, 2017, 15(10): 1509-1520.e4.
|
[21] |
ELTA G H, ENESTVEDT B K, SAUER B G, et al. ACG clinical guideline: diagnosis and management of pancreatic cysts[J]. Am J Gastroenterol, 2018, 113(4): 464-479.
doi: 10.1038/ajg.2018.14
pmid: 29485131
|
[22] |
IDENO N, YAMAGUCHI H, GHOSH B, et al. GNASR201C induces pancreatic cystic neoplasms in mice that express activated Kras by inhibiting YAP1 signaling[J]. Gastroenterology, 2018, 155(5): 1593-1607.e12.
|
[23] |
KOPP J L, DUBOIS C L, SCHAEFFER D F, et al. Loss of pten and activation of Kras synergistically induce formation of intraductal papillary mucinous neoplasia from pancreatic ductal cells in mice[J]. Gastroenterology, 2018, 154(5): 1509-1523.e5.
|
[24] |
BEATO F, REVERÓN D, DEZSI K B, et al. Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas[J]. Lab Invest, 2021, 101(2): 204-217.
doi: 10.1038/s41374-020-00494-1
pmid: 33037322
|
[25] |
HUANG B, TRUJILLO M A, FUJIKURA K, et al. Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms[J]. J Pathol, 2020, 252(3): 252-262.
|
[26] |
KATO H, TATEISHI K, FUJIWARA H, et al. MNX1-HNF1B axis is indispensable for intraductal papillary mucinous neoplasm lineages[J]. Gastroenterology, 2022, 162(4): 1272-1287.e16.
|
[27] |
DESAI R, HUANG L, GONZALEZ R S, et al. Oncogenic GNAS uses PKA-dependent and independent mechanisms to induce cell proliferation in human pancreatic ductal and acinar organoids[J]. Mol Cancer Res, 2024, 22(5): 440-451.
|
[28] |
ROMERO-CALVO I, WEBER C R, RAY M, et al. Human organoids share structural and genetic features with primary pancreatic adenocarcinoma tumors[J]. Mol Cancer Res, 2019, 17(1): 70-83.
|
[29] |
GROSSMAN J E, MUTHUSWAMY L, HUANG L, et al. Organoid sensitivity correlates with therapeutic response in patients with pancreatic cancer[J]. Clin Cancer Res, 2022, 28(4): 708-718.
|
[30] |
TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discov, 2018, 8(9): 1112-1129.
doi: 10.1158/2159-8290.CD-18-0349
pmid: 29853643
|
[31] |
FARSHADI E A, CHANG J, SAMPADI B, et al. Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma[J]. Clin Cancer Res, 2021, 27(23): 6602-6612.
doi: 10.1158/1078-0432.CCR-21-1681
pmid: 34580113
|
[32] |
SHUKLA H D, DUKIC T, ROY S, et al. Pancreatic cancer derived 3D organoids as a clinical tool to evaluate the treatment response[J]. Front Oncol, 2022, 12: 1072774.
|
[33] |
KOIKAWA K, KIBE S, SUIZU F, et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy[J]. Cell, 2021, 184(18): 4753-4771.e27.
doi: 10.1016/j.cell.2021.07.020
pmid: 34388391
|
[34] |
GRANAT L M, KAMBHAMPATI O, KLOSEK S, et al. The promises and challenges of patient-derived tumor organoids in drug development and precision oncology[J]. Animal Model Exp Med, 2019, 2(3): 150-161.
doi: 10.1002/ame2.12077
pmid: 31773090
|
[35] |
ZHOU T X, XIE Y J, HOU X P, et al. Irbesartan overcomes gemcitabine resistance in pancreatic cancer by suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis[J]. J Exp Clin Cancer Res, 2023, 42(1): 111.
|
[36] |
SEINO T, KAWASAKI S, SHIMOKAWA M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression[J]. Cell Stem Cell, 2018, 22(3): 454-467.e6.
doi: S1934-5909(17)30510-6
pmid: 29337182
|
[37] |
SEPPÄLÄ T T, ZIMMERMAN J W, SURI R, et al. Precision medicine in pancreatic cancer: patient-derived organoid pharmacotyping is a predictive biomarker of clinical treatment response[J]. Clin Cancer Res, 2022, 28(15): 3296-3307.
|
[38] |
DEMYAN L, HABOWSKI A N, PLENKER D, et al. Pancreatic cancer patient-derived organoids can predict response to neoadjuvant chemotherapy[J]. Ann Surg, 2022, 276(3): 450-462.
doi: 10.1097/SLA.0000000000005558
pmid: 35972511
|
[39] |
HIRT C K, BOOIJ T H, GROB L, et al. Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label treatment[J]. Cell Genom, 2022, 2(2): 100095.
|
[40] |
DRIEHUIS E, GRACANIN A, VRIES R G J, et al. Establishment of pancreatic organoids from normal tissue and tumors[J]. STAR Protoc, 2020, 1(3): 100192.
|
[41] |
KUMANO K, NAKAHASHI H, LOUPHRASITTHIPHOL P, et al. Hypoxia at 3D organoid establishment selects essential subclones within heterogenous pancreatic cancer[J]. Front Cell Dev Biol, 2024, 12: 1327772.
|
[42] |
KRIEGER T G, BLANC S L, JABS J, et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy[J]. Nat Commun, 2021, 12(1): 5826.
|
[43] |
JABS J, ZICKGRAF F M, PARK J, et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations[J]. Mol Syst Biol, 2017, 13(11): 955.
|
[44] |
XU H X, LYU X D, YI M, et al. Organoid technology and applications in cancer research[J]. J Hematol Oncol, 2018, 11(1): 116.
|