China Oncology ›› 2023, Vol. 33 ›› Issue (3): 210-217.doi: 10.19401/j.cnki.1007-3639.2023.03.003
• Specialists' Commentary • Previous Articles Next Articles
PAN Jian(), ZHU Yao, DAI Bo, YE Dingwei(
)
Received:
2023-01-30
Revised:
2023-02-20
Online:
2023-03-30
Published:
2023-04-17
Contact:
YE Dingwei
Share article
CLC Number:
PAN Jian, ZHU Yao, DAI Bo, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of prostate cancer in 2022[J]. China Oncology, 2023, 33(3): 210-217.
[1] |
DÖRR M, HÖLZEL D, SCHUBERT-FRITSCHLE G, et al. Changes in prognostic and therapeutic parameters in prostate cancer from an epidemiological view over 20 years[J]. Oncol Res Treat, 2015, 38(1/2): 8-14.
doi: 10.1159/000371717 |
[2] |
UGAI T, SASAMOTO N, LEE H Y, et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications[J]. Nat Rev Clin Oncol, 2022, 19(10): 656-673.
doi: 10.1038/s41571-022-00672-8 pmid: 36068272 |
[3] |
HJELMBORG J B, SCHEIKE T, HOLST K, et al. The heritability of prostate cancer in the Nordic twin study of cancer[J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(11): 2303-2310.
doi: 10.1158/1055-9965.EPI-13-0568 |
[4] |
BROOK M N, NÍ RAGHALLAIGH H, GOVINDASAMI K, et al. Family history of prostate cancer and survival outcomes in the UK genetic prostate cancer study[J]. Eur Urol, 2023, 83(3): 257-266.
doi: 10.1016/j.eururo.2022.11.019 |
[5] |
CLEMENTS M B, VERTOSICK E A, GUERRIOS-RIVERA L, et al. Defining the impact of family history on detection of high-grade prostate cancer in a large multi-institutional cohort[J]. Eur Urol, 2022, 82(2): 163-169.
doi: 10.1016/j.eururo.2021.12.011 |
[6] | LI S, SILVESTRI V, LESLIE G, et al. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants[J]. J Clin Oncol, 2022, 40(14): 1529-1541. |
[7] |
ZHANG Y W, SONG M Y, MUCCI L A, et al. Zinc supplement use and risk of aggressive prostate cancer: a 30-year follow-up study[J]. Eur J Epidemiol, 2022, 37(12): 1251-1260.
doi: 10.1007/s10654-022-00922-0 pmid: 36326979 |
[8] |
YUAN J P, HOULAHAN K E, RAMANAND S G, et al. Prostate cancer transcriptomic regulation by the interplay of germline risk alleles, somatic mutations, and 3D genomic architecture[J]. Cancer Discov, 2022, 12(12): 2838-2855.
doi: 10.1158/2159-8290.CD-22-0027 |
[9] | SHANGGUAN X, MA Z H, YU M H, et al. Squalene epoxidase metabolic dependency is a targetable vulnerability in castration-resistant prostate cancer[J]. Cancer Res, 2022, 82(17): 3032-3044. |
[10] |
FONG K W, ZHAO J C, LU X D, et al. PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing[J]. Mol Cell, 2022, 82(24): 4611-4626.e7.
doi: 10.1016/j.molcel.2022.11.010 |
[11] |
PATEL R, FORD C A, RODGERS L, et al. Cyclocreatine suppresses creatine metabolism and impairs prostate cancer progression[J]. Cancer Res, 2022, 82(14): 2565-2575.
doi: 10.1158/0008-5472.CAN-21-1301 pmid: 35675421 |
[12] |
QIN L, CHUNG Y M, BERK M, et al. Hypoxia-reoxygenation couples 3βHSD1 enzyme and cofactor upregulation to facilitate androgen biosynthesis and hormone therapy resistance in prostate cancer[J]. Cancer Res, 2022, 82(13): 2417-2430.
doi: 10.1158/0008-5472.CAN-21-4256 pmid: 35536859 |
[13] |
GUAN X N, POLESSO F, WANG C J, et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy[J]. Nature, 2022, 606(7915): 791-796.
doi: 10.1038/s41586-022-04522-6 |
[14] | SENA L A, KUMAR R, SANIN D E, et al. Androgen receptor activity in prostate cancer dictates efficacy of bipolar androgen therapy through MYC[J]. J Clin Invest, 2022, 132(23): e162396. |
[15] |
WESTBROOK T C, GUAN X N, RODANSKY E, et al. Transcriptional profiling of matched patient biopsies clarifies molecular determinants of enzalutamide-induced lineage plasticity[J]. Nat Commun, 2022, 13(1): 5345.
doi: 10.1038/s41467-022-32701-6 pmid: 36109521 |
[16] |
XIE J J, HE H, KONG W N, et al. Targeting androgen receptor phase separation to overcome antiandrogen resistance[J]. Nat Chem Biol, 2022, 18(12): 1341-1350.
doi: 10.1038/s41589-022-01151-y pmid: 36229685 |
[17] | SHEN T, DONG B N, MENG Y L, et al. A COP1-GATA2 axis suppresses AR signaling and prostate cancer[J]. Proc Natl Acad Sci U S A, 2022, 119(43): e2205350119. |
[18] | JEONG J H, ZHONG S W, LI F Z, et al. Tumor-derived OBP2A promotes prostate cancer castration resistance[J]. J Exp Med, 2023, 220(3): e20211546. |
[19] |
LE T K, CHERIF C, OMABE K, et al. DDX5 mRNA-targeting antisense oligonucleotide as a new promising therapeutic in combating castration-resistant prostate cancer[J]. Mol Ther, 2023, 31(2): 471-486.
doi: 10.1016/j.ymthe.2022.08.005 |
[20] |
AL-NAKOUZI N, WANG C K, OO H Z, et al. Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer[J]. Nat Commun, 2022, 13(1): 4760.
doi: 10.1038/s41467-022-32530-7 |
[21] | SUN R, WEI T, DING D L, et al. CYCLIN K down-regulation induces androgen receptor gene intronic polyadenylation, variant expression and PARP inhibitor vulnerability in castration-resistant prostate cancer[J]. Proc Natl Acad Sci U S A, 2022, 119(39): e2205509119. |
[22] |
NGUYEN D T, YANG W, RENGANATHAN A, et al. Acetylated HOXB13 regulated super enhancer genes define therapeutic vulnerabilities of castration-resistant prostate cancer[J]. Clin Cancer Res, 2022, 28(18): 4131-4145.
doi: 10.1158/1078-0432.CCR-21-3603 |
[23] | ALMEIDA A, GABRIEL M, FIRLEJ V, et al. Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer[J]. J Extracell Vesicles, 2022, 11(5): e12210. |
[24] | DAO T N T, KIM M G, KOO B, et al. Chimeric nanocomposites for the rapid and simple isolation of urinary extracellular vesicles[J]. J Extracell Vesicles, 2022, 11(2): e12195. |
[25] | CORRELL V L, OTTO J J, RISI C M, et al. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis[J]. J Extracell Vesicles, 2022, 11(2): e12184. |
[26] | LEE E, SHIN S, YIM S G, et al. Sessile droplet array for sensitive profiling of multiple extracellular vesicle immuno-subtypes[J]. Biosens Bioelectron, 2022, 218: 114760. |
[27] |
BRYANT A K, LEE K M, ALBA P R, et al. Association of prostate-specific antigen screening rates with subsequent metastatic prostate cancer incidence at US veterans health administration facilities[J]. JAMA Oncol, 2022, 8(12): 1747-1755.
doi: 10.1001/jamaoncol.2022.4319 pmid: 36279204 |
[28] |
CARLSSON S V, ARNSRUD GODTMAN R, PIHL C G, et al. Young age on starting prostate-specific antigen testing is associated with a greater reduction in prostate cancer mortality: 24-year follow-up of the göteborg randomized population-based prostate cancer screening trial[J]. Eur Urol, 2023, 83(2): 103-109.
doi: 10.1016/j.eururo.2022.10.006 |
[29] |
GODTMAN R A, KOLLBERG K S, PIHL C G, et al. The association between age, prostate cancer risk, and higher gleason score in a long-term screening program: results from the göteborg-1 prostate cancer screening trial[J]. Eur Urol, 2022, 82(3): 311-317.
doi: 10.1016/j.eururo.2022.01.018 pmid: 35120773 |
[30] | DENG M H, REN Z P, ZHANG H B, et al. Unamplified and real-time label-free miRNA-21 detection using solution-gated graphene transistors in prostate cancer diagnosis[J]. Adv Sci (Weinh), 2023, 10(4): e2205886. |
[31] |
NYBERG T, BROOK M N, FICORELLA L, et al. CanRisk-prostate: a comprehensive, externally validated risk model for the prediction of future prostate cancer[J]. J Clin Oncol, 2023, 41(5): 1092-1104.
doi: 10.1200/JCO.22.01453 |
[32] |
HUGOSSON J, MÅNSSON M, WALLSTRÖM J, et al. Prostate cancer screening with PSA and MRI followed by targeted biopsy only[J]. N Engl J Med, 2022, 387(23): 2126-2137.
doi: 10.1056/NEJMoa2209454 |
[33] |
GREY A D R, SCOTT R, SHAH B, et al. Multiparametric ultrasound versus multiparametric MRI to diagnose prostate cancer (CADMUS): a prospective, multicentre, paired-cohort, confirmatory study[J]. Lancet Oncol, 2022, 23(3): 428-438.
doi: 10.1016/S1470-2045(22)00016-X pmid: 35240084 |
[34] |
WAGENSVELD I M, OSSES D F, GROENENDIJK P M, et al. A prospective multicenter comparison study of risk-adapted ultrasound-directed and magnetic resonance imaging-directed diagnostic pathways for suspected prostate cancer in biopsy-naïve men[J]. Eur Urol, 2022, 82(3): 318-326.
doi: 10.1016/j.eururo.2022.03.003 pmid: 35341658 |
[35] |
BRISBANE W G, PRIESTER A M, BALLON J, et al. Targeted prostate biopsy: umbra, penumbra, and value of perilesional sampling[J]. Eur Urol, 2022, 82(3): 303-310.
doi: 10.1016/j.eururo.2022.01.008 |
[36] |
ULANER G A, THOMSEN B, BASSETT J, et al. 18F-DCFPyL PET/CT for initially diagnosed and biochemically recurrent prostate cancer: prospective trial with pathologic confirmation[J]. Radiology, 2022, 305(2): 419-428.
doi: 10.1148/radiol.220218 |
[37] | OLIVIER P, GIRAUDET A L, SKANJETI A, et al. Phase Ⅲ study of 18F-PSMA-1007 versus 18F-fluorocholine PET/CT for localization of prostate cancer biochemical recurrence: a prospective, randomized, cross-over, multicenter study[J]. J Nucl Med, 2022: jnumed.122.264743. |
[38] |
GANDAGLIA G, MAZZONE E, STABILE A, et al. Prostate-specific membrane antigen radioguided surgery to detect nodal metastases in primary prostate cancer patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection: results of a planned interim analysis of a prospective phase 2 study[J]. Eur Urol, 2022, 82(4): 411-418.
doi: 10.1016/j.eururo.2022.06.002 pmid: 35879127 |
[39] |
KAOUK J H, FERGUSON E L, BEKSAC A T, et al. Single-port robotic transvesical partial prostatectomy for localized prostate cancer: initial series and description of technique[J]. Eur Urol, 2022, 82(5): 551-558.
doi: 10.1016/j.eururo.2022.07.017 pmid: 35970657 |
[40] |
DE BARROS H A, VAN OOSTEROM M N, DONSWIJK M L, et al. Robot-assisted prostate-specific membrane antigen-radioguided salvage surgery in recurrent prostate cancer using a DROP-IN gamma probe: the first prospective feasibility study[J]. Eur Urol, 2022, 82(1): 97-105.
doi: 10.1016/j.eururo.2022.03.002 pmid: 35339318 |
[41] |
STUDENT V JR, TUDOS Z, STUDENTOVA Z, et al. Effect of peritoneal fixation (PerFix) on lymphocele formation in robot-assisted radical prostatectomy with pelvic lymphadenectomy: results of a randomized prospective trial[J]. Eur Urol, 2023, 83(2): 154-162.
doi: 10.1016/j.eururo.2022.07.027 |
[42] |
TREE A C, OSTLER P, VAN DER VOET H, et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial[J]. Lancet Oncol, 2022, 23(10): 1308-1320.
doi: 10.1016/S1470-2045(22)00517-4 pmid: 36113498 |
[43] |
GROEN V H, HAUSTERMANS K, POS F J, et al. Patterns of failure following external beam radiotherapy with or without an additional focal boost in the randomized controlled FLAME trial for localized prostate cancer[J]. Eur Urol, 2022, 82(3): 252-257.
doi: 10.1016/j.eururo.2021.12.012 |
[44] |
POLLACK A, KARRISON T G, BALOGH A G, et al. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial[J]. Lancet, 2022, 399(10338): 1886-1901.
doi: 10.1016/S0140-6736(21)01790-6 pmid: 35569466 |
[45] |
AMAR U, KISHA N. High-dose radiotherapy or androgen deprivation therapy (HEAT) as treatment intensification for localized prostate cancer: an individual patient-data network meta-analysis from the MARCAP consortium[J]. Eur Urol, 2022, 82(1): 106-114.
doi: 10.1016/j.eururo.2022.04.003 pmid: 35469702 |
[46] |
ZAPATERO A, GUERRERO A, MALDONADO X, et al. High-dose radiotherapy and risk-adapted androgen deprivation in localised prostate cancer (DART 01/05): 10-year results of a phase 3 randomised, controlled trial[J]. Lancet Oncol, 2022, 23(5): 671-681.
doi: 10.1016/S1470-2045(22)00190-5 pmid: 35427469 |
[47] |
TILKI D, CHEN M H, WU J, et al. Adjuvant versus early salvage radiation therapy after radical prostatectomy for pN1 prostate cancer and the risk of death[J]. J Clin Oncol, 2022, 40(20): 2186-2192.
doi: 10.1200/JCO.21.02800 |
[48] |
TRAN P T, LOWE K, TSAI H L, et al. Phase Ⅱ randomized study of salvage radiation therapy plus enzalutamide or placebo for high-risk prostate-specific antigen recurrent prostate cancer after radical prostatectomy: the SALV-ENZA trial[J]. J Clin Oncol, 2023, 41(6): 1307-1317.
doi: 10.1200/JCO.22.01662 |
[49] | DEVOS G, TOSCO L, BALDEWIJNS M, et al. ARNEO: a randomized phase Ⅱ trial of neoadjuvant degarelix with or without apalutamide prior to radical prostatectomy for high-risk prostate cancer[J]. Eur Urol, 2022: S0302-S2838(22)02638-0. |
[50] |
EHDAIE B, TEMPANY C M, HOLLAND F, et al. MRI-guided focused ultrasound focal therapy for patients with intermediate-risk prostate cancer: a phase 2b, multicentre study[J]. Lancet Oncol, 2022, 23(7): 910-918.
doi: 10.1016/S1470-2045(22)00251-0 pmid: 35714666 |
[51] |
BÖGEMANN M, SHORE N D, SMITH M R, et al. Erratum to “efficacy and safety of darolutamide in patients with nonmetastatic castration-resistant prostate cancer stratified by prostate-specific antigen doubling time: Planned subgroup analysis of the phase 3 ARAMIS trial”[J]. Eur Urol, 2023, 83(2): e60.
doi: 10.1016/j.eururo.2022.11.018 |
[52] | PAN J, WEI Y, ZHANG T, et al. Stereotactic radiotherapy for lesions detected via 68Ga-prostate-specific membrane antigen and 18F-fluorodexyglucose positron emission tomography/computed tomography in patients with nonmetastatic prostate cancer with early prostate-specific antigen progression on androgen deprivation therapy: a prospective single-center study[J]. Eur Urol Oncol, 2022, 5(4): 420-427. |
[53] | SCHAEFFER E M, SRINIVAS S, ADRA N, et al. NCCN guidelines® insights: prostate cancer, version 1.2023[J]. J Natl Compr Canc Netw, 2022, 20(12): 1288-1298. |
[54] |
FIZAZI K, FOULON S, CARLES J, et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 ×2 factorial design[J]. Lancet, 2022, 399(10336): 1695-1707.
doi: 10.1016/S0140-6736(22)00367-1 |
[55] |
YANAGISAWA T, RAJWA P, THIBAULT C, et al. Androgen receptor signaling inhibitors in addition to docetaxel with androgen deprivation therapy for metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis[J]. Eur Urol, 2022, 82(6): 584-598.
doi: 10.1016/j.eururo.2022.08.002 pmid: 35995644 |
[56] |
ARMSTRONG A J, AZAD A A, IGUCHI T, et al. Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer[J]. J Clin Oncol, 2022, 40(15): 1616-1622.
doi: 10.1200/JCO.22.00193 |
[57] |
GU W J, HAN W Q, LUO H, et al. Rezvilutamide versus bicalutamide in combination with androgen-deprivation therapy in patients with high-volume, metastatic, hormone-sensitive prostate cancer (CHART): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2022, 23(10): 1249-1260.
doi: 10.1016/S1470-2045(22)00507-1 pmid: 36075260 |
[58] |
AGARWAL N, TANGEN C M, HUSSAIN M H A, et al. Orteronel for metastatic hormone-sensitive prostate cancer: a multicenter, randomized, open-label phase Ⅲ trial (SWOG-1216)[J]. J Clin Oncol, 2022, 40(28): 3301-3309.
doi: 10.1200/JCO.21.02517 |
[59] |
SAAD F, STERNBERG C N, EFSTATHIOU E, et al. Prostate-specific antigen progression in enzalutamide-treated men with nonmetastatic castration-resistant prostate cancer: any rise in prostate-specific antigen may require closer monitoring[J]. Eur Urol, 2020, 78(6): 847-853.
doi: 10.1016/j.eururo.2020.08.025 pmid: 33010985 |
[60] |
MERSEBURGER A S, ATTARD G, ÅSTRÖM L, et al. Continuous enzalutamide after progression of metastatic castration-resistant prostate cancer treated with docetaxel (PRESIDE): an international, randomised, phase 3b study[J]. Lancet Oncol, 2022, 23(11): 1398-1408.
doi: 10.1016/S1470-2045(22)00560-5 pmid: 36265504 |
[61] |
SARTOR O, DE BONO J, CHI K N, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer[J]. N Engl J Med, 2021, 385(12): 1091-1103.
doi: 10.1056/NEJMoa2107322 |
[62] |
YU E Y, PIULATS J M, GRAVIS G, et al. Pembrolizumab plus olaparib in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort A study[J]. Eur Urol, 2023, 83(1): 15-26.
doi: 10.1016/j.eururo.2022.08.005 |
[63] |
YU E Y, KOLINSKY M P, BERRY W R, et al. Pembrolizumab plus docetaxel and prednisone in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort B study[J]. Eur Urol, 2022, 82(1): 22-30.
doi: 10.1016/j.eururo.2022.02.023 pmid: 35397952 |
[64] | CHI K N, RATHKOPF D, SMITH M R, et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2022. [Online ahead of print] |
[65] | FIZAZI K, RETZ M, PETRYLAK D P, et al. Nivolumab plus rucaparib for metastatic castration-resistant prostate cancer: results from the phase 2 CheckMate 9KD trial[J]. J Immunother Cancer, 2022, 10(8): e004761. |
[66] |
AGARWAL N, MCGREGOR B, MAUGHAN B L, et al. Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021)[J]. Lancet Oncol, 2022, 23(7): 899-909.
doi: 10.1016/S1470-2045(22)00278-9 pmid: 35690072 |
[67] |
KIM J W, MCKAY R R, RADKE M R, et al. Randomized trial of olaparib with or without cediranib for metastatic castration-resistant prostate cancer: the results from national cancer institute 9984[J]. J Clin Oncol, 2023, 41(4): 871-880.
doi: 10.1200/JCO.21.02947 |
[68] |
NARAYAN V, BARBER-ROTENBERG J S, JUNG I Y, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial[J]. Nat Med, 2022, 28(4): 724-734.
doi: 10.1038/s41591-022-01726-1 |
[69] | LAKE B P M, WYLIE R G, BAŘINKA C, et al. Tunable multivalent platform for immune recruitment to lower antigen expressing cancers[J]. Angew Chem Int Ed Engl, 2023, 62(9): e202214659. |
[1] | Committee of Integrated Rehabilitation for Urogenital Tumors, Chinese Anti-Cancer Association. Chinese expert consensus on perioperative integrated rehabilitation for radical prostatectomy (2024 edition) [J]. China Oncology, 2024, 34(9): 890-902. |
[2] | PAN Jian, YE Dingwei, ZHU Yao, WANG Beihe. Correlation analysis of PSMA PET/CT-derived parameters and circulating tumor DNA features in patients with hormone-sensitive prostate cancer [J]. China Oncology, 2024, 34(7): 680-685. |
[3] | Cancer Nuclear Medicine Committee of China Anti-Cancer Association, Chinese Association of Nuclear Medicine Physicians. Expert consensus of 177Lu-labeled PSMA radioligand therapy for clinical practice of prostate cancer (2024 edition) [J]. China Oncology, 2024, 34(7): 702-714. |
[4] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[5] | QIAN Bin, CHEN Haiquan. Important progress in surgical treatment of lung cancer in 2023 [J]. China Oncology, 2024, 34(4): 335-339. |
[6] | FENG Zheng, GUO Qinhao, ZHU Jun, WU Xiaohua, WEN Hao. Progress in treatment of gynecological cancer in 2023 [J]. China Oncology, 2024, 34(4): 340-360. |
[7] | XU Yonghu, XU Dazhi. Progress and prospects of gastric cancer treatment in the 21st century [J]. China Oncology, 2024, 34(3): 239-249. |
[8] | WANG Xuefei, ZHOU Peng, TANG Zhaoqing. New progress and development trend of surgical treatment for gastric cancer [J]. China Oncology, 2024, 34(3): 250-258. |
[9] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[10] | ZHANG Siyuan, JIANG Zefei. Important research progress in clinical practice for advanced breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 143-150. |
[11] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[12] | LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023 [J]. China Oncology, 2024, 34(1): 1-12. |
[13] | LI Tong, YANG Huijuan. Progress in diagnosis and treatment of mucinous ovarian cancer [J]. China Oncology, 2024, 34(1): 90-96. |
[14] | KANG Yinnan, CHEN Shun, XIE Youcheng, ZHENG Ying, HE Yujing, LI Chuyi, YU Xiaohui. Application and research progress of antibody drug conjugates in HER2 positive advanced gastric cancer [J]. China Oncology, 2023, 33(8): 790-800. |
[15] | QU Ning, WANG Yuting, MA Ben, WANG Yu. Advances in basic research, clinical diagnosis and treatment of thyroid cancer in 2022 [J]. China Oncology, 2023, 33(5): 423-430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd