China Oncology ›› 2022, Vol. 32 ›› Issue (5): 373-379.doi: 10.19401/j.cnki.1007-3639.2022.05.001
• Specialists' Commentary • Previous Articles Next Articles
QU Yiping1()(
), HOU Peng2,3(
)(
)
Received:
2022-03-14
Revised:
2022-04-29
Online:
2022-05-30
Published:
2022-06-09
Contact:
HOU Peng
E-mail:15398036489@163.com;phou@xjtu.edu.cn
Share article
CLC Number:
QU Yiping, HOU Peng. Genetic characteristics and prognosis of metastatic thyroid cancer in children[J]. China Oncology, 2022, 32(5): 373-379.
[1] |
PAULSON V A, RUDZINSKI E R, HAWKINS D S. Thyroid cancer in the pediatric population[J]. Genes, 2019, 10(9): 723.
doi: 10.3390/genes10090723 |
[2] |
HANLEY P, LORD K, BAUER A J. Thyroid disorders in children and adolescents: a review[J]. JAMA Pediatr, 2016, 170(10): 1008-1019.
doi: 10.1001/jamapediatrics.2016.0486 |
[3] |
BAUER A J. Pediatric thyroid cancer: genetics, therapeutics and outcome[J]. Endocrinol Metab Clin North Am, 2020, 49(4): 589-611.
doi: 10.1016/j.ecl.2020.08.001 |
[4] |
LUZÓN-TORO B, FERNÁNDEZ R, VILLALBA-BENITO L, et al. Influencers on thyroid cancer onset: molecular genetic basis[J]. Genes, 2019, 10(11): 913.
doi: 10.3390/genes10110913 |
[5] |
CHAN C M, YOUNG J, PRAGER J, et al. Pediatric thyroid cancer[J]. Adv Pediatr, 2017, 64(1): 171-190.
doi: 10.1016/j.yapd.2017.03.007 |
[6] |
PARISI M T, KHALATBARI H, PARIKH S R, et al. Initial treatment of pediatric differentiated thyroid cancer: a review of the current risk-adaptive approach[J]. Pediatr Radiol, 2019, 49(11): 1391-1403.
doi: 10.1007/s00247-019-04457-7 |
[7] |
CHESOVER A D, VALI R, HEMMATI S H, et al. Lung metastasis in children with differentiated thyroid cancer: factors associated with diagnosis and outcomes of therapy[J]. Thyroid, 2021, 31(1): 50-60.
doi: 10.1089/thy.2020.0002 |
[8] |
KIRATLI P O, VOLKAN-SALANCI B, GÜNAY E C, et al. Thyroid cancer in pediatric age group: an institutional experience and review of the literature[J]. J Pediatr Hematol Oncol, 2013, 35(2): 93-97.
doi: 10.1097/MPH.0b013e3182755d9e |
[9] |
DERMODY S, WALLS A, HARLEY E H Jr. Pediatric thyroid cancer: an update from the SEER database 2007-2012[J]. Int J Pediatr Otorhinolaryngol, 2016, 89: 121-126.
doi: 10.1016/j.ijporl.2016.08.005 |
[10] |
CHRISTISON-LAGAY E, BAERTSCHIGER R M. Management of differentiated thyroid carcinoma in pediatric patients[J]. Surg Oncol Clin N Am, 2021, 30(2): 235-251.
doi: 10.1016/j.soc.2020.11.013 |
[11] |
LEE Y A, JUNG H W, KIM H Y, et al. Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: a retrospective analysis of a large pediatric thyroid cancer cohort over 33 years[J]. J Clin Endocrinol Metab, 2015, 100(4): 1619-1629.
doi: 10.1210/jc.2014-3647 |
[12] |
CORDIOLI M I, MORAES L, CURY A N, et al. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma?[J]. Endocr Relat Cancer, 2015, 22(6): R311-R324.
doi: 10.1530/ERC-15-0381 |
[13] |
O’GORMAN C S, HAMILTON J, RACHMIEL M, et al. Thyroid cancer in childhood: a retrospective review of childhood course[J]. Thyroid, 2010, 20(4): 375-380.
doi: 10.1089/thy.2009.0386 |
[14] |
NIKIFOROV Y E. Radiation-induced thyroid cancer: what we have learned from Chernobyl[J]. Endocr Pathol, 2006, 17(4): 307-317.
doi: 10.1007/s12022-006-0001-5 |
[15] | FEINMESSER R, LUBIN E, SEGAL K, et al. Carcinoma of the thyroid in children: a review[J]. J Pediatr Endocrinol Metab, 1997, 10(6): 561-568. |
[16] |
AL-QURAYSHI Z, HAUCH A, SRIVASTAV S, et al. A national perspective of the risk, presentation, and outcomes of pediatric thyroid cancer[J]. JAMA Otolaryngol Head Neck Surg, 2016, 142(5): 472-478.
doi: 10.1001/jamaoto.2016.0104 |
[17] |
RUSSO M, MALANDRINO P, MOLETI M, et al. Differentiated thyroid cancer in children: heterogeneity of predictive risk factors[J]. Pediatr Blood Cancer, 2018, 65(9): e27226.
doi: 10.1002/pbc.27226 |
[18] | NGO D Q, LE D T, NGO Q X, et al. Risk factors for lateral lymph node metastasis of papillary thyroid carcinoma in children[J]. J Pediatr Surg, 2022 |
[19] |
BAUMGARTEN H, JENKS C M, ISAZA A, et al. Bilateral papillary thyroid cancer in children: risk factors and frequency of postoperative diagnosis[J]. J Pediatr Surg, 2020, 55(6): 1117-1122.
doi: 10.1016/j.jpedsurg.2020.02.040 |
[20] |
NGO D Q, NGO Q X, VAN LE Q. Pediatric thyroid cancer: risk factors for central lymph node metastasis in patients with cN0 papillary carcinoma[J]. Int J Pediatr Otorhinolaryngol, 2020, 133: 110000.
doi: 10.1016/j.ijporl.2020.110000 |
[21] |
RUBINSTEIN J C, HERRICK-REYNOLDS K, DINAUER C, et al. Recurrence and complications in pediatric and adolescent papillary thyroid cancer in a high-volume practice[J]. J Surg Res, 2020, 249: 58-66.
doi: 10.1016/j.jss.2019.12.002 |
[22] |
KIM J, SUN Z F, ADAM M A, et al. Predictors of nodal metastasis in pediatric differentiated thyroid cancer[J]. J Pediatr Surg, 2017, 52(1): 120-123.
doi: 10.1016/j.jpedsurg.2016.10.033 |
[23] |
LIU Z M, HU D, HUANG Y H, et al. Factors associated with distant metastasis in pediatric thyroid cancer: evaluation of the SEER database[J]. Endocr Connect, 2019, 8(2): 78-85.
doi: 10.1530/EC-18-0441 |
[24] |
SHUKLA N, OSAZUWA-PETERS N, MEGWALU U C. Association between age and nodal metastasis in papillary thyroid carcinoma[J]. Otolaryngol Head Neck Surg, 2021, 165(1): 43-49.
doi: 10.1177/0194599820966995 |
[25] |
TANG A L, KLOOS R T, AUNINS B, et al. Pathologic features associated with molecular subtypes of well-differentiated thyroid cancer[J]. Endocr Pract, 2021, 27(3): 206-211.
doi: 10.1016/j.eprac.2020.09.003 |
[26] |
GALUPPINI F, VIANELLO F, CENSI S, et al. Differentiated thyroid carcinoma in pediatric age: genetic and clinical scenario[J]. Front Endocrinol (Lausanne), 2019, 10: 552.
doi: 10.3389/fendo.2019.00552 |
[27] | IWADATE M, MITSUTAKE N, MATSUSE M, et al. The clinicopathological results of thyroid cancer with BRAF V600E mutation in the young population of fukushima[J]. J Clin Endocrinol Metab, 2020, 105(12): dgaa573. |
[28] |
DECAUSSIN-PETRUCCI M, DELADOËY J, HAFDI-NEJJARI Z, et al. Expression of CD133 in differentiated thyroid cancer of young patients[J]. J Clin Pathol, 2015, 68(6): 434-440.
doi: 10.1136/jclinpath-2014-202625 |
[29] |
CORDIOLI M I C V, MORAES L, CARVALHEIRA G, et al. AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma[J]. Cancer Med, 2016, 5(7): 1535-1541.
doi: 10.1002/cam4.698 |
[30] | ALZAHRANI A S, ALSWAILEM M, ALSWAILEM A A, et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel[J]. J Clin Endocrinol Metab, 2020, 105(10): dgaa389. |
[31] | ELISEI R, ROMEI C, VORONTSOVA T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults[J]. J Clin Endocrinol Metab, 2001, 86(7): 3211-3216. |
[32] |
ZEINDL-EBERHART E, LIEBMANN S, JUNGBLUT P R, et al. Influence of RET/PTC1 and RET/PTC3 oncoproteins in radiation-induced papillary thyroid carcinomas on amounts of cytoskeletal protein species[J]. Amino Acids, 2011, 41(2): 415-425.
doi: 10.1007/s00726-010-0733-x |
[33] |
MOSTOUFI-MOAB S, LABOURIER E, SULLIVAN L, et al. Molecular testing for oncogenic gene alterations in pediatric thyroid lesions[J]. Thyroid, 2018, 28(1): 60-67.
doi: 10.1089/thy.2017.0059 |
[34] | FRANCO A T, RICARTE-FILHO J C, ISAZA A, et al. Fusion oncogenes are associated with increased metastatic capacity and persistent disease in pediatric thyroid cancers[J]. J Clin Oncol, 2022, 40(10): 1081-1090. |
[35] |
SASSOLAS G, HAFDI-NEJJARI Z, FERRARO A, et al. Oncogenic alterations in papillary thyroid cancers of young patients[J]. Thyroid, 2012, 22(1): 17-26.
doi: 10.1089/thy.2011.0215 |
[36] |
OISHI N, KONDO T, NAKAZAWA T, et al. Frequent BRAF V600E and absence of TERT promoter mutations characterize sporadic pediatric papillary thyroid carcinomas in Japan[J]. Endocr Pathol, 2017, 28(2): 103-111.
doi: 10.1007/s12022-017-9470-y |
[37] |
ONDER S, OZTURK SARI S, YEGEN G, et al. Classic architecture with multicentricity and local recurrence, and absence of TERT promoter mutations are correlates of BRAF (V600E) harboring pediatric papillary thyroid carcinomas[J]. Endocr Pathol, 2016, 27(2): 153-161.
doi: 10.1007/s12022-016-9420-0 |
[38] |
OTSUBO R, MUSSAZHANOVA Z, AKAZAWA Y, et al. Sporadic pediatric papillary thyroid carcinoma harboring the ETV6/NTRK3 fusion oncogene in a 7-year-old Japanese girl: a case report and review of literature[J]. J Pediatr Endocrinol Metab, 2018, 31(4): 461-467.
doi: 10.1515/jpem-2017-0292 |
[39] |
SCOUTEN W T, PATEL A, TERRELL R, et al. Cytoplasmic localization of the paired box gene, Pax-8, is found in pediatric thyroid cancer and may be associated with a greater risk of recurrence[J]. Thyroid, 2004, 14(12): 1037-1046.
doi: 10.1089/thy.2004.14.1037 |
[40] |
STOSIC A, FULIGNI F, ANDERSON N D, et al. Diverse oncogenic fusions and distinct gene expression patterns define the genomic landscape of pediatric papillary thyroid carcinoma[J]. Cancer Res, 2021, 81(22): 5625-5637.
doi: 10.1158/0008-5472.CAN-21-0761 |
[41] | FRANCO A T, LABOURIER E, ABLORDEPPEY K K, et al. miRNA expression can classify pediatric thyroid lesions and increases the diagnostic yield of mutation testing[J]. Pediatr Blood Cancer, 2020, 67(6): e28276. |
[42] |
ELOY C, SANTOS J, SOARES P, et al. Intratumoural lymph vessel density is related to presence of lymph node metastases and separates encapsulated from infiltrative papillary thyroid carcinoma[J]. Virchows Arch, 2011, 459(6): 595-605.
doi: 10.1007/s00428-011-1161-3 |
[43] |
SHIMURA K, SHIBATA H, MIZUNO Y, et al. Rapid growth and early metastasis of papillary thyroid carcinoma in an adolescent girl with Graves' disease[J]. Horm Res Paediatr, 2019, 91(3): 210-215.
doi: 10.1159/000491102 |
[44] | CORDIOLI M I C V, MORAES L, ALVES M T, et al. Thyroid-specific genes expression uncovered age-related differences in pediatric thyroid carcinomas[J]. Int J Endocrinol, 2016, 2016: 1956740. |
[45] | JARZAB B, HANDKIEWICZ-JUNAK D. Differentiated thyroid cancer in children and adults: same or distinct disease?[J]. Hormones (Athens), 2007, 6(3): 200-209. |
[46] |
LAN X B, BAO H, GE X Y, et al. Genomic landscape of metastatic papillary thyroid carcinoma and novel biomarkers for predicting distant metastasis[J]. Cancer Sci, 2020, 111(6): 2163-2173.
doi: 10.1111/cas.14389 |
[47] |
ZANELLA A B, SCHEFFEL R S, NAVA C F, et al. Dynamic risk stratification in the follow-up of children and adolescents with differentiated thyroid cancer[J]. Thyroid, 2018, 28(10): 1285-1292.
doi: 10.1089/thy.2018.0075 |
[48] |
NIKIFOROV Y E. Thyroid carcinoma: molecular pathways and therapeutic targets[J]. Mod Pathol, 2008, 21(Suppl 2): S37-S43.
doi: 10.1038/modpathol.2008.10 |
[49] |
DINAUER C A, BREUER C, RIVKEES S A. Differentiated thyroid cancer in children: diagnosis and management[J]. Curr Opin Oncol, 2008, 20(1): 59-65.
doi: 10.1097/CCO.0b013e3282f30220 |
[50] |
FRANCIS G L, WAGUESPACK S G, BAUER A J, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2015, 25(7): 716-759.
doi: 10.1089/thy.2014.0460 |
[51] |
SUBBIAH V, HU M I, WIRTH L J, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study[J]. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501.
doi: 10.1016/S2213-8587(21)00120-0 |
[52] |
BRADFORD D, LARKINS E, MUSHTI S L, et al. FDA approval summary: selpercatinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions[J]. Clin Cancer Res, 2021, 27(8): 2130-2135.
doi: 10.1158/1078-0432.CCR-20-3558 |
[53] |
BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328.
doi: 10.1016/S0140-6736(14)60421-9 |
[54] |
FENG G L, LUO Y, ZHANG Q, et al. Sorafenib and radioiodine-refractory differentiated thyroid cancer (RR-DTC): a systematic review and meta-analysis[J]. Endocrine, 2020, 68(1): 56-63.
doi: 10.1007/s12020-019-02167-6 |
[55] |
HIGUCHI Y, MOTOKI T, ISHIDA H, et al. Sorafenib treatment for papillary thyroid carcinoma with diffuse lung metastases in a child with autism spectrum disorder: a case report[J]. BMC Cancer, 2017, 17(1): 775.
doi: 10.1186/s12885-017-3782-7 |
[56] | WELLS S A Jr, ROBINSON B G, GAGEL R F, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase Ⅲ trial[J]. J Clin Oncol, 2012, 30(2): 134-141. |
[57] |
GRANDE E, KREISSL M C, FILETTI S, et al. Vandetanib in advanced medullary thyroid cancer: review of adverse event management strategies[J]. Adv Ther, 2013, 30(11): 945-966.
doi: 10.1007/s12325-013-0069-5 |
[58] |
FOX E, WIDEMANN B C, CHUK M K, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma[J]. Clin Cancer Res, 2013, 19(15): 4239-4248.
doi: 10.1158/1078-0432.CCR-13-0071 |
[59] |
FERRARI S M, ELIA G, RAGUSA F, et al. Lenvatinib: an investigational agent for the treatment of differentiated thyroid cancer[J]. Expert Opin Investig Drugs, 2021, 30(9): 913-921.
doi: 10.1080/13543784.2021.1972971 |
[60] |
MATRONE A, PRETE A, NERVO A, et al. Lenvatinib as a salvage therapy for advanced metastatic medullary thyroid cancer[J]. J Endocrinol Invest, 2021, 44(10): 2139-2151.
doi: 10.1007/s40618-020-01491-3 |
[61] |
MAHAJAN P, DAWRANT J, KHERADPOUR A, et al. Response to lenvatinib in children with papillary thyroid carcinoma[J]. Thyroid, 2018, 28(11): 1450-1454.
doi: 10.1089/thy.2018.0064 |
[62] |
GASPAR N, CAMPBELL-HEWSON Q, MELCON S G, et al. Phase Ⅰ/Ⅱ study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)[J]. ESMO Open, 2021, 6(5): 100250.
doi: 10.1016/j.esmoop.2021.100250 |
[63] |
ZHANG Y C, DENG X Z, DING Z, et al. Preoperative neoadjuvant targeted therapy with apatinib for inoperable differentiated thyroid cancer: a case report[J]. Medicine, 2021, 100(12): e25191.
doi: 10.1097/MD.0000000000025191 |
[1] | CHEN Yijun, LIU Yuhang, DUAN Haibo, WANG Xiongjun. Functional and mechanistic of AGPAT5 in liver cancer [J]. China Oncology, 2024, 34(9): 838-847. |
[2] | WU Wen, ZHANG Ruoxin, WENG Junyong, MA Yanlei, CAI Guoxiang, LI Xinxiang, YANG Yongzhi. Exploring the prognostic value of positive lymph node ratio in stage Ⅲ colorectal cancer patients and establishing a predictive model [J]. China Oncology, 2024, 34(9): 873-880. |
[3] | XIAO Feng, XU Tonglin, ZHU Lin, XIAO Jingwen, WU Tianqi, GU Chunyan. Significance of infiltration of M1 tumor-associated macrophages in hepatocellular carcinoma [J]. China Oncology, 2024, 34(8): 726-733. |
[4] | CAO Xiaoshan, YANG Beibei, CONG Binbin, LIU Hong. The progress of treatment for brain metastases of triple-negative breast cancer [J]. China Oncology, 2024, 34(8): 777-784. |
[5] | HUANG Sijie, KANG Xun, LI Wenbin. Clinical research progress of intrathecal therapy in the treatment of leptomeningeal metastasis [J]. China Oncology, 2024, 34(7): 695-701. |
[6] | ZHANG Ruoxin, YE Zilan, WENG Junyong, LI Xinxiang. Correlation study between advanced age and inferior prognosis in stage Ⅱ colorectal cancer patients [J]. China Oncology, 2024, 34(5): 485-492. |
[7] | SHEN Jie, FENG Xiaoshuang, WEN Hao, ZHOU Changming, MO Miao, WANG Zezhou, YUAN Jing, WU Xiaohua, ZHENG Ying. Metastasis patterns and survival analysis of 572 patients with metastatic cervical cancer: a hospital-based real world study [J]. China Oncology, 2024, 34(4): 361-367. |
[8] | LI Xiaohui, ZHAO Jiaxu, PENG Haibao, ZHANG Ye, ZENG Rui, CHI Yudan. Effects of HMGA2 on migration and proliferation of leptomeningeal metastatic melanoma [J]. China Oncology, 2024, 34(4): 389-399. |
[9] | LI Jun, LU Tingwei, FANG Xuqian. Impact of MSI-H/dMMR on clinicopathological characteristics and prognosis of patients with BRAF V600E-mutated resectable colorectal cancer [J]. China Oncology, 2024, 34(11): 1061-1066. |
[10] | OUYANG Fei, WANG Yang, CHEN Yu, PEI Guoqing, WANG Ling, ZHANG Yang, SHI Lei. Construction of the prediction model of breast cancer bone metastasis based on machine learning [J]. China Oncology, 2024, 34(10): 903-914. |
[11] | ZHAO Junxiu, ZHU Yi, SONG Xiaoyu, ZHE Chao, XIAO Yuhan, LIU Yunduo, LI Linhai, XIAO Bin. Circ-0007766 acts as a miR-1972 sponge to promote breast cancer cell migration and invasion via upregulation of HER2 [J]. China Oncology, 2024, 34(10): 915-930. |
[12] | LIU Xuerou, YANG Yumei, ZHAO Qian, RONG Xiangyu, LIU Wei, ZHENG Ruijie, PANG Jinlong, LI Xian, LI Shanshan. Research progress on the role of glutamine metabolism-related proteins in tumor metastasis [J]. China Oncology, 2024, 34(1): 97-103. |
[13] | YANG Ziyi, GU Bingxin, XU Xiaoping, SONG Shaoli. Comparison of 18F-FDG and 68Ga-FAPI PET/CT in the diagnosis of lung metastasis in different malignant tumors [J]. China Oncology, 2023, 33(9): 829-833. |
[14] | JIN Yizi, LIN Mingxi, ZHANG Jian. Receptor discordance between primary breast cancer and liver metastases [J]. China Oncology, 2023, 33(9): 834-843. |
[15] | WU Han, YANG Zhangru, FENG Wen, ZENG Wanqin, GUO Jindong, LI Hongxuan, WANG Changlu, WANG Jiaming, LÜ Changxing, ZHANG Qin, YU Wen, CAI Xuwei, FU Xiaolong. The efficacy and prognosis analysis after stereotactic body radiotherapy for multiple primary early-stage lung cancer [J]. China Oncology, 2023, 33(9): 844-856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd