[1] |
FERLAY J E M, LAM Breast cancer overtakes lung cancer in terms of number of new cancer cases worldwide[M]. 2021.
|
[2] |
PANTEL K,, HAYES D F. Disseminated breast tumour cells: biological and clinical meaning[J]. Nat Rev Clin Oncol, 2018,15(3):129-131.
|
[3] |
MAKHOUL I,, MONTGOMERY C O,, GADDY D, et al. The best of both worlds-managing the cancer, saving the bone[J]. Nat Rev Endocrinol, 2016,12(1):29-42.
|
[4] |
WORTZEL I,, DROR S,, KENIFIC C M, et al. Exosome-mediated metastasis: communication from a distance[J]. Dev Cell, 2019,49(3):347-360.
|
[5] |
GUO Y X,, JI X,, LIU J B, et al. Effects of exosomes on pre-metastatic niche formation in tumors[J]. Mol Cancer, 2019,18(1):39.
|
[6] |
SUPAKUL S,, YAO K T,, OCHI H, et al. Pericytes as a source of osteogenic cells in bone fracture healing[J]. Int J Mol Sci, 2019,20(5):1079.
|
[7] |
PANG X,, GONG K,, ZHANG X, et al. Osteopontin as a multifaceted driver of bone metastasis and drug resistance[J]. Pharmacol Res, 2019,144:235-244.
|
[8] |
HOFBAUER L C,, BOZEC A,, RAUNER M, et al. Novel approaches to target the microenvironment of bone metastasis[J]. Nat Rev Clin Oncol, 2021,18(8):488-505.
|
[9] |
DAS S,, CLÉZARDIN P,, KAMEL S, et al. The CaSR in pathogenesis of breast cancer: a new target for early stage bone metastases[J]. Front Oncol, 2020,10:69.
|
[10] |
WU X Q,, LI F F,, DANG L, et al. RANKL/RANK system-based mechanism for breast cancer bone metastasis and related therapeutic strategies[J]. Front Cell Dev Biol, 2020,8:76.
|
[11] |
LUO G J,, HE Y D,, ZHAO Q, et al. Immune cells act as promising targets for the treatment of bone metastasis[J]. Recent Pat Anticancer Drug Discov, 2017,12(3):221-233.
|
[12] |
COLEMAN R E,, CROUCHER P I,, PADHANI A R, et al. Bone metastases[J]. Nat Rev Dis Primers, 2020,6(1):83.
|
[13] |
WANG K Y,, GU Y,, LIAO Y H, et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain[J]. J Clin Invest, 2020,130(7):3603-3620.
|
[14] |
HARARI A,, GRACIOTTI M,, BASSANI-STERNBERG M, et al. Antitumour dendritic cell vaccination in a priming and boosting approach[J]. Nat Rev Drug Discov, 2020,19(9):635-652.
|
[15] |
LIANG S,, ZHENG J,, WU W, et al. A robust nanoparticle platform for RNA interference in macrophages to suppress tumor cell migration[J]. Front Pharmacol, 2018,9:1465.
|
[16] |
GEORGE C N,, CANUAS-LANDERO V,, THEODOULOU E, et al. Oestrogen and zoledronic acid driven changes to the bone and immune environments: potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions[J]. J Bone Oncol, 2020,25:100317.
|
[17] |
SUN W T,, GE K,, JIN Y, et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis[J]. ACS Nano, 2019,13(7):7556-7567.
|
[18] |
GNANT M,, PFEILER G,, STEGER G G, et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2019,20(3):339-351.
|
[19] |
COLEMAN R,, FINKELSTEIN D M,, BARRIOS C, et al. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2020,21(1):60-72.
|
[20] |
JEONG H,, JEONG J H,, KIM J E, et al. Final results of the randomized phase 2 LEO trial and bone protective effects of everolimus for premenopausal hormone receptor-positive, HER2-negative metastatic breast cancer[J]. Int J Cancer, 2021.
|
[21] |
XU J,, HIGGINS M J,, TOLANEY S M, et al. A phase Ⅱ trial of cabozantinib in hormone receptor-positive breast cancer with bone metastases[J]. Oncologist, 2020,25(8):652-660.
|
[22] |
ZHENG H Q,, BAE Y J,, KASIMIR-BAUER S, et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy[J]. Cancer Cell, 2017, 32(6): 731-747.e6.
|
[23] |
COSMAN F,, CRITTENDEN D B,, ADACHI J D, et al. Romosozumab treatment in postmenopausal women with osteoporosis[J]. N Engl J Med, 2016,375(16):1532-1543.
|
[24] |
HESSE E,, SCHRÖDER S,, BRANDT D, et al. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness[J]. JCI Insight, 2019,4(9):e125543.
|
[25] |
SPRAVE T,, VERMA V,, FÖRSTER R, et al. Randomized phase Ⅱ trial evaluating pain response in patients with spinal metastases following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy[J]. Radiother Oncol, 2018,128(2):274-282.
|
[26] |
SPRAVE T,, VERMA V,, FÖRSTER R, et al. Local response and pathologic fractures following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy for spinal metastases - a randomized controlled trial[J]. BMC Cancer, 2018,18(1):859.
|
[27] |
UENO N T,, TAHARA R K,, FUJII T, et al. Phase Ⅱ study of Radium-223 dichloride combined with hormonal therapy for hormone receptor-positive, bone-dominant metastatic breast cancer[J]. Cancer Med, 2020,9(3):1025-1032.
|
[28] |
Study of radium-223 dichloride versus placebo and hormonal treatment as background therapy in subjects with bone predominant HER2 (human epidermal growth factor receptor 2) negative hormone receptor positive metastatic breast cancer[M].
|
[29] |
KERNEL N N I. Testing the addition of radium therapy (radium-223 dichloride) to the usual chemotherapy treatment (paclitaxel) for advanced breast cancer spread to the bones[J]. Case Med Res, 2019.
|
[30] |
LEI W,, DUAN R,, LI J B, et al. The IAP antagonist SM-164 eliminates triple-negative breast cancer metastasis to bone and lung in mice[J]. Sci Rep, 2020,10(1):7004.
|
[31] |
LU Z H,, ZOU J L,, LI S, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches[J]. Nature, 2020,579(7798):284-290.
|