China Oncology ›› 2022, Vol. 32 ›› Issue (12): 1235-1241.doi: 10.19401/j.cnki.1007-3639.2022.12.012
• Review • Previous Articles Next Articles
GUO Zhaoyang1,2(), HU Jingzhou2(
)
Received:
2022-08-04
Revised:
2022-10-31
Online:
2022-12-30
Published:
2023-02-02
Contact:
HU Jingzhou
Share article
CLC Number:
GUO Zhaoyang, HU Jingzhou. Research progress and prospect of Siglec in innate immune cells in tumor[J]. China Oncology, 2022, 32(12): 1235-1241.
[1] |
PERETS R, BAR J, RASCO D W, et al. Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small cell lung cancer[J]. Ann Oncol, 2021, 32(3): 395-403.
doi: 10.1016/j.annonc.2020.11.020 |
[2] |
WU S Y, XU Y, CHEN L, et al. Combined angiogenesis and PD-1 inhibition for immunomodulatory TNBC: concept exploration and biomarker analysis in the FUTURE-C-Plus trial[J]. Mol Cancer, 2022, 21(1): 84.
doi: 10.1186/s12943-022-01536-6 |
[3] |
AKINLEYE A, RASOOL Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics[J]. J Hematol Oncol, 2019, 12(1): 92.
doi: 10.1186/s13045-019-0779-5 |
[4] |
SMITH B A H, BERTOZZI C R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans[J]. Nat Rev Drug Discov, 2021, 20(3): 217-243.
doi: 10.1038/s41573-020-00093-1 pmid: 33462432 |
[5] |
REILY C, STEWART T J, RENFROW M B, et al. Glycosylation in health and disease[J]. Nat Rev Nephrol, 2019, 15(6): 346-366.
doi: 10.1038/s41581-019-0129-4 pmid: 30858582 |
[6] |
CHEN J, ZHANG K, ZHI Y R, et al. Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway[J]. Clin Transl Med, 2021, 11(9): e478.
doi: 10.1002/ctm2.478 pmid: 34586722 |
[7] | CHAMSEDDINE A N, ASSI T, MIR O, et al. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: a TAM-pting approach[J]. Pharmacol Ther, 2022, 231: 107986. |
[8] |
CASSETTA L, FRAGKOGIANNI S, SIMS A H, et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets[J]. Cancer Cell, 2019, 35(4): 588-602.e10.
doi: S1535-6108(19)30104-7 pmid: 30930117 |
[9] |
BARKAL A A, BREWER R E, MARKOVIC M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396.
doi: 10.1038/s41586-019-1456-0 |
[10] |
WANG J, SUN J W, LIU L, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med, 2019, 25(4): 656-666.
doi: 10.1038/s41591-019-0374-x pmid: 30833750 |
[11] |
DALY J, CARLSTEN M, O'DWYER M. Sugar free: novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer[J]. Front Immunol, 2019, 10: 1047.
doi: 10.3389/fimmu.2019.01047 pmid: 31143186 |
[12] |
BÜLL C, COLLADO-CAMPS E, KERS-REBEL E D, et al. Metabolic sialic acid blockade lowers the activation threshold of moDCs for TLR stimulation[J]. Immunol Cell Biol, 2017, 95(4): 408-415.
doi: 10.1038/icb.2016.105 pmid: 27874015 |
[13] | CROCKER P R, CLARK E A, FILBIN M, et al. Siglecs: a family of sialic-acid binding lectins[J]. Glycobiology, 1998, 8(2): v. |
[14] |
DUAN S T, PAULSON J C. Siglecs as immune cell checkpoints in disease[J]. Annu Rev Immunol, 2020, 38: 365-395.
doi: 10.1146/annurev-immunol-102419-035900 pmid: 31986070 |
[15] |
CROCKER P R, PAULSON J C, VARKI A. Siglecs and their roles in the immune system[J]. Nat Rev Immunol, 2007, 7(4): 255-266.
doi: 10.1038/nri2056 pmid: 17380156 |
[16] |
VAN DE WALL S, SANTEGOETS K C M, VAN HOUTUM E J H, et al. Sialoglycans and siglecs can shape the tumor immune microenvironment[J]. Trends Immunol, 2020, 41(4): 274-285.
doi: S1471-4906(20)30021-1 pmid: 32139317 |
[17] |
ESTUS S, SHAW B C, DEVANNEY N, et al. Evaluation of CD33 as a genetic risk factor for Alzheimer's disease[J]. Acta Neuropathol, 2019, 138(2): 187-199.
doi: 10.1007/s00401-019-02000-4 pmid: 30949760 |
[18] |
LÄUBLI H, VARKI A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses[J]. Cell Mol Life Sci, 2020, 77(4): 593-605.
doi: 10.1007/s00018-019-03288-x pmid: 31485715 |
[19] |
BHIDE G P, COLLEY K J. Sialylation of N-glycans: mechanism, cellular compartmentalization and function[J]. Histochem Cell Biol, 2017, 147(2): 149-174.
doi: 10.1007/s00418-016-1520-x pmid: 27975143 |
[20] | HUGONNET M, SINGH P, HAAS Q, et al. The distinct roles of sialyltransferases in cancer biology and onco-immunology[J]. Front Immunol, 2021, 12: 799861. |
[21] | SCHAUER R, KAMERLING J P. Exploration of the sialic acid world[J]. Advance Carbohydrate Chem Biochem, 2018, 75: 1-213. |
[22] |
GONZALEZ-GIL A, SCHNAAR R L. Siglec ligands[J]. Cells, 2021, 10(5): 1260.
doi: 10.3390/cells10051260 |
[23] |
BÜLL C, STOEL M A, DEN BROK M H, et al. Sialic acids sweeten a tumor's life[J]. Cancer Res, 2014, 74(12): 3199-3204.
doi: 10.1158/0008-5472.CAN-14-0728 pmid: 24830719 |
[24] |
BEATSON R, TAJADURA-ORTEGA V, ACHKOVA D, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin siglec-9[J]. Nat Immunol, 2016, 17(11): 1273-1281.
doi: 10.1038/ni.3552 pmid: 27595232 |
[25] |
JANDUS C, BOLIGAN K F, CHIJIOKE O, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance[J]. J Clin Invest, 2014, 124(4): 1810-1820.
doi: 10.1172/JCI65899 pmid: 24569453 |
[26] |
OHNISHI K, KOMOHARA Y, SAITO Y, et al. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma[J]. Cancer Sci, 2013, 104(9): 1237-1244.
doi: 10.1111/cas.12212 |
[27] |
SAITO Y, OHNISHI K, MIYASHITA A, et al. Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma[J]. Cancer Immunol Res, 2015, 3(12): 1356-1363.
doi: 10.1158/2326-6066.CIR-14-0180 |
[28] |
OHNISHI K, YAMAGUCHI M, ERDENEBAATAR C, et al. Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma[J]. Cancer Sci, 2016, 107(6): 846-852.
doi: 10.1111/cas.12929 |
[29] |
ASANO T, OHNISHI K, SHIOTA T, et al. CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis[J]. Cancer Sci, 2018, 109(5): 1723-1730.
doi: 10.1111/cas.13565 |
[30] |
ASANO K, NABEYAMA A, MIYAKE Y, et al. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens[J]. Immunity, 2011, 34(1): 85-95.
doi: 10.1016/j.immuni.2010.12.011 pmid: 21194983 |
[31] | SINGH R, CHOI B K. Siglec1-expressing subcapsular sinus macrophages provide soil for melanoma lymph node metastasis[J]. Elife, 2019, 8: e48916. |
[32] |
LI W, HAN Y N, SUN C M, et al. Novel insights into the roles and therapeutic implications of MUC1 oncoprotein via regulating proteins and non-coding RNAs in cancer[J]. Theranostics, 2022, 12(3): 999-1011.
doi: 10.7150/thno.63654 pmid: 35154471 |
[33] |
RODRIGUEZ E, BOELAARS K, BROWN K, et al. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9[J]. Nat Commun, 2021, 12(1): 1270.
doi: 10.1038/s41467-021-21550-4 pmid: 33627655 |
[34] |
JING W Q, ZHANG L, QIN F, et al. Targeting macrophages for cancer therapy disrupts bone homeostasis and impairs bone marrow erythropoiesis in mice bearing Lewis lung carcinoma tumors[J]. Cell Immunol, 2018, 331: 168-177.
doi: S0008-8749(17)30142-9 pmid: 30103869 |
[35] |
THERUVATH J, MENARD M, SMITH B A H, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication[J]. Nat Med, 2022, 28(2): 333-344.
doi: 10.1038/s41591-021-01625-x pmid: 35027753 |
[36] | YANG L, FENG Y Y, WANG S S, et al. Siglec-7 is an indicator of natural killer cell function in acute myeloid leukemia[J]. Int Immunopharmacol, 2021, 99: 107965. |
[37] |
TAO L, WANG S, YANG L, et al. Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma[J]. Clin Exp Immunol, 2020, 201(2): 161-170.
doi: 10.1111/cei.13444 pmid: 32319079 |
[38] | BENMERZOUG S, CHEVALIER M F, VILLIER L, et al. Siglec-7 may limit natural killer cell-mediated antitumor responses in bladder cancer patients[J]. Eur Urol Open Sci, 2021, 34: 79-82. |
[39] | HERNÁNDEZ-CASELLES T, MIGUEL R C S, RUIZ-ALCARAZ A J, et al. CD33 (siglec-3) inhibitory function: role in the NKG2D/DAP10 activating pathway[J]. J Immunol Res, 2019, 2019: 6032141. |
[40] |
NICOLL G, AVRIL T, LOCK K, et al. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and-independent mechanisms[J]. Eur J Immunol, 2003, 33(6): 1642-1648.
doi: 10.1002/eji.200323693 |
[41] |
KAWASAKI Y, ITO A, WITHERS D A, et al. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells[J]. Glycobiology, 2010, 20(11): 1373-1379.
doi: 10.1093/glycob/cwq116 pmid: 20663960 |
[42] |
DALY J, SARKAR S, NATONI A, et al. Targeting hypersialylation in multiple myeloma represents a novel approach to enhance NK cell-mediated tumor responses[J]. Blood Adv, 2022, 6(11): 3352-3366.
doi: 10.1182/bloodadvances.2021006805 |
[43] | WISNOVSKY S, MÖCKL L, MALAKER S A, et al. Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7[J]. Proc Natl Acad Sci USA, 2021, 118(5): e2015024118. |
[44] |
FONG J J, TSAI C M, SAHA S, et al. Siglec-7 engagement by GBS β-protein suppresses pyroptotic cell death of natural killer cells[J]. Proc Natl Acad Sci USA, 2018, 115(41): 10410-10415.
doi: 10.1073/pnas.1804108115 pmid: 30254166 |
[45] | HUANG C H, LIAO Y J, FAN T H, et al. A developed NK-92MI cell line with siglec-7neg phenotype exhibits high and sustainable cytotoxicity against leukemia cells[J]. Int J Mol Sci, 2018, 19(4): E1073. |
[46] |
HONG S, YU C, RODRIGUES E, et al. Modulation of siglec-7 signaling via in situ-created high-affinity cis-ligands[J]. ACS Cent Sci, 2021, 7(8): 1338-1346.
doi: 10.1021/acscentsci.1c00064 |
[47] |
GRABENSTEIN S, BARNARD K N, ANIM M, et al. Deacetylated sialic acids modulates immune mediated cytotoxicity via the sialic acid-Siglec pathway[J]. Glycobiology, 2021, 31(10): 1279-1294.
doi: 10.1093/glycob/cwab068 pmid: 34192335 |
[48] | IBARLUCEA-BENITEZ I, WEITZENFELD P, SMITH P, et al. Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity[J]. Proc Natl Acad Sci USA, 2021, 118(26): e2107424118. |
[49] |
DE LA ROCHERE P, GUIL-LUNA S, DECAUDIN D, et al. Humanized mice for the study of immuno-oncology[J]. Trends Immunol, 2018, 39(9): 748-763.
doi: S1471-4906(18)30125-X pmid: 30077656 |
[50] | WANG J Y, MANNI M, BÄRENWALDT A, et al. Siglec receptors modulate dendritic cell activation and antigen presentation to T cells in cancer[J]. Front Cell Dev Biol, 2022, 10: 828916. |
[51] |
LÜBBERS J, RODRÍGUEZ E, VAN KOOYK Y. Modulation of immune tolerance via siglec-sialic acid interactions[J]. Front Immunol, 2018, 9: 2807.
doi: 10.3389/fimmu.2018.02807 pmid: 30581432 |
[52] |
ISHIDA A, OHTA M, TODA M, et al. Mucin-induced apoptosis of monocyte-derived dendritic cells during maturation[J]. Proteomics, 2008, 8(16): 3342-3349.
doi: 10.1002/pmic.200800039 pmid: 18690650 |
[53] |
OHTA M, ISHIDA A, TODA M, et al. Immunomodulation of monocyte-derived dendritic cells through ligation of tumor-produced mucins to siglec-9[J]. Biochem Biophys Res Commun, 2010, 402(4): 663-669.
doi: 10.1016/j.bbrc.2010.10.079 |
[54] |
DING Y Y, GUO Z H, LIU Y Q, et al. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class Ⅰ-peptide complex formation[J]. Nat Immunol, 2016, 17(10): 1167-1175.
doi: 10.1038/ni.3535 |
[55] |
AFFANDI A J, GRABOWSKA J, OLESEK K, et al. Selective tumor antigen vaccine delivery to human CD169+ antigen-presenting cells using ganglioside-liposomes[J]. PNAS, 2020, 117(44): 27528-27539.
doi: 10.1073/pnas.2006186117 |
[56] | LAMPRINAKI D, GARCIA-VELLO P, MARCHETTI R, et al. Siglec-7 mediates immunomodulation by colorectal cancer-associated Fusobacterium nucleatum ssp. animalis[J]. Front Immunol, 2021, 12: 744184. |
[1] | XIAO Feng, XU Tonglin, ZHU Lin, XIAO Jingwen, WU Tianqi, GU Chunyan. Significance of infiltration of M1 tumor-associated macrophages in hepatocellular carcinoma [J]. China Oncology, 2024, 34(8): 726-733. |
[2] | LIANG Yingyun, CHEN Jianhua. Application progress of oncolytic virus combined with immunotherapy in the treatment of malignant tumors [J]. China Oncology, 2024, 34(7): 686-694. |
[3] | XU Yuchen, ZHANG Jian, WANG Yan, LIN Jinyi, ZHOU Yuhong, CHENG Leilei, GE Junbo. Therapeutic effects of tofacitinib on steroid-resistant immune checkpoint inhibitor-associated myocarditis [J]. China Oncology, 2024, 34(4): 400-408. |
[4] | GUO Ye, ZHANG Chenping. Expert consensus on immune checkpoint inhibitors treatment for recurrent/metastatic head and neck squamous cell carcinoma (2024 edition) [J]. China Oncology, 2024, 34(4): 425-438. |
[5] | WU Han, XU Lei, WANG Miaomiao, ZHANG Ruizhe, XU Xiaoyang, GUO Ningjie, WU Shuhua. Correlation of LC3 and the recruitment of dendritic cell and the formation of TLS in colorectal cancer and its clinical significance [J]. China Oncology, 2023, 33(9): 818-828. |
[6] | ZHOU Cong, HE Lina, CHENG Xiaojiao, HUANG Tinglei, TU Shuiping. Effect of RSPO3 on inhibiting the growth of colorectal cancer transplanted tumors and increasing NK cell infiltration in vivo [J]. China Oncology, 2023, 33(7): 664-672. |
[7] | ZHANG Haoting, ZHENG Jing, FU Mengjiao, ZHOU Jianying. Research progress on thyroid dysfunction induced by immunotherapy for lung cancer [J]. China Oncology, 2023, 33(7): 701-706. |
[8] | ZUO Xueliang, CHEN Zhiqiang, DONG Runyu, WANG Zhixiong, CAI Juan. The value of combined detection of LDHA and PD-L1 in predicting the efficacy and prognosis of advanced gastric cancer patients treated with PD-1 inhibitor [J]. China Oncology, 2023, 33(5): 460-468. |
[9] | WANG Yu, BI Nan. Advancements in the research of immunomodulatory effects of radiation therapy: from basic to clinical [J]. China Oncology, 2023, 33(12): 1083-1091. |
[10] | ZHOU Teng, ZHANG Jian. The latest progress of breast cancer treatment at 2023 ESMO [J]. China Oncology, 2023, 33(11): 981-988. |
[11] | Society of Onco-Endocrinology of Chinese Anti-Cancer Association. Chinese expert consensus on immunotherapy for gynecological malignant tumors (2023 edition) [J]. China Oncology, 2023, 33(10): 954-967. |
[12] | XU Yuchen, CHENG Leilei, WANG Yan, LIN Jinyi, CHEN Jiahui, CHEN Yifan, ZHOU Yuhong, LIU Tianshu, GE Junbo. Predictive value of sST2 level in immune-related adverse events [J]. China Oncology, 2022, 32(8): 712-718. |
[13] | JIANG Jinling, ZHOU Chenfei, XI Wenqi, SHI Min, GEN Mei, ZHAO Liqin, CAI Qu, JIANG Jinsong, ZHANG Jun. Optimization of 5-FU metronomic chemotherapy strategy and regulation of the immune microenvironment in gastric cancer: an in vivo study [J]. China Oncology, 2022, 32(7): 596-605. |
[14] | CHEN Yifan, CHENG Leilei, SHEN Yihui, ZHANG Hui, WANG Xuejun, XU Yuchen, GE Junbo. Establishment of a mouse myocarditis model induced by programmed death-1 inhibitor [J]. China Oncology, 2022, 32(7): 606-613. |
[15] | WU Jianhui, CHU Xiangling, WANG Liqiang, LIN Xinqing, XIE Xiaohong, XIE Mengqing, ZHAO Jing, DENG Haiyi, YANG Yilin, QIU Guihuan, ZHOU Maolin, SUN Ni, LI Ru, CHEN Ying, DENG Jiaxi, ZENG Chen, PAN Bolin, QIN Yinyin, LIU Ming, SU Chunxia, ZHOU Chengzhi. Epidemiological analysis of real-world immune checkpoint inhibitor-related pneumonitis in Chinese patients with lung cancer [J]. China Oncology, 2022, 32(6): 469-477. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd