China Oncology ›› 2024, Vol. 34 ›› Issue (11): 1053-1060.doi: 10.19401/j.cnki.1007-3639.2024.11.008
• Review • Previous Articles Next Articles
JIANG Yuanyuan1,2(), WEI Wenfei2, WU Jingya2, LI Huawen1,2(
)
Received:
2024-09-23
Revised:
2024-11-10
Online:
2024-11-30
Published:
2024-12-11
Contact:
LI Huawen
Share article
CLC Number:
JIANG Yuanyuan, WEI Wenfei, WU Jingya, LI Huawen. Application of organoids in drug screening of gynecological malignant tumors[J]. China Oncology, 2024, 34(11): 1053-1060.
Tab. 1
Comparison of advantages and disadvantages of preclinical cancer models"
Cancer model | Advantage | Disadvantage | Reference |
---|---|---|---|
PDC | ① Cost-effective; ② Amenable to high-throughput assays; ③ Available for genetic manipulation | ① Require immortalization, hard to initiate; ② Poor tumor heterogeneity; ③ Largely lost physiological features | [ |
PDX | ① Capture intra-tumor heterogeneity; ② Allow tumor-niche interaction; ③ Allow metastasis development | ① Costly and time-consuming; ② Hard to maintain and passage; ③ Unamenable to high-throughput assays | [ |
PDO | ① Capture intra-tumor heterogeneity; ② Easy to maintain and passage; ③ Amenable to high-throughput assays | ① Relatively costly; ② Complex culture techniques; ③ Lack of a variety of interstitial cells in a similar environment | [ |
[1] | HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. |
[2] | 孙雅倩. 三维细胞模型在抗癌药物筛选中的研究进展[J]. 现代诊断与治疗, 2023, 34(11): 1629-1631. |
SUN Y Q. Research progress of 3D cell model in anti-cancer drug screening[J]. Mod Diagn Treat, 2023, 34(11): 1629-1631. | |
[3] | 张宁, 杨慧, 王鹏. 类器官在癌症研究、药物筛选与精准诊疗中的应用进展[J]. 北京大学学报(医学版), 2022, 54(5): 814-21. |
ZHANG N, YANG H, WANG P. Advances in the application of organoids in cancer research, drug screening, and precision diagnosis and treatment[J]. J Peking Univ (Health Sci), 2022, 54(5): 814-21. | |
[4] | LIU Y H, WU W T, CAI C J, et al. Patient-derived xenograft models in cancer therapy: technologies and applications[J]. Signal Transduct Target Ther, 2023, 8(1): 160. |
[5] | JIN J K, YOSHIMURA K, SEWASTJANOW-SILVA M, et al. Challenges and prospects of patient-derived xenografts for cancer research[J]. Cancers, 2023, 15(17): 4352. |
[6] |
ZANELLA E R, GRASSI E, TRUSOLINO L. Towards precision oncology with patient-derived xenografts[J]. Nat Rev Clin Oncol, 2022, 19(11): 719-732.
doi: 10.1038/s41571-022-00682-6 pmid: 36151307 |
[7] | CHEN H D, ZHUO Q F, YE Z, et al. Organoid model: a new hope for pancreatic cancer treatment?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188466. |
[8] | ZHAO Z X, CHEN X Y, DOWBAJ A M, et al. Organoids[J]. Nat Rev Methods Primers, 2022, 2: 94. |
[9] | GÓMEZ-ÁLVAREZ M, AGUSTINA-HERNÁNDEZ M, FRANCÉS-HERRERO E, et al. Addressing key questions in organoid models: who, where, how, and why?[J]. Int J Mol Sci, 2023, 24(21): 16014. |
[10] |
WILSON H V. A new method by which sponges may be artificially reared[J]. Science, 1907, 25(649): 912-915.
pmid: 17842577 |
[11] |
PELLEGRINI G, TRAVERSO C E, FRANZI A T, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium[J]. Lancet, 1997, 349(9057): 990-993.
doi: 10.1016/S0140-6736(96)11188-0 pmid: 9100626 |
[12] | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. |
[13] | Method of the year 2017: organoids[J]. Nat Meth, 2018, 15: 1. |
[14] | The United States Congress. S. 5002 (117th): FDA modernization Act 2.0[R/OL]. 2022[2024-01-01]. |
[15] |
YUKI K, CHENG N, NAKANO M, et al. Organoid models of tumor immunology[J]. Trends Immunol, 2020, 41(8): 652-664.
doi: S1471-4906(20)30134-4 pmid: 32654925 |
[16] | SUN C P, LAN H R, FANG X L, et al. Organoid models for precision cancer immunotherapy[J]. Front Immunol, 2022, 13: 770465. |
[17] |
KOPPER O, DE WITTE C J, LÕHMUSSAAR K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5): 838-849.
doi: 10.1038/s41591-019-0422-6 pmid: 31011202 |
[18] | RINEHART C A JR, LYN-COOK B D, KAUFMAN D G. Gland formation from human endometrial epithelial cells in vitro[J]. In Vitro Cell Dev Biol, 1988, 24(10): 1037-1041. |
[19] |
MARU Y, TANAKA N, ITAMI M, et al. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors[J]. Gynecol Oncol, 2019, 154(1): 189-198.
doi: S0090-8258(19)31230-2 pmid: 31101504 |
[20] |
BORETTO M, MAENHOUDT N, LUO X L, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening[J]. Nat Cell Biol, 2019, 21(8): 1041-1051.
doi: 10.1038/s41556-019-0360-z pmid: 31371824 |
[21] | MARU Y, TANAKA N, EBISAWA K, et al. Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma[J]. Cancer Sci, 2019, 110(9): 2992-3005. |
[22] |
NEAL J T, LI X N, ZHU J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7): 1972-1988.e16.
doi: S0092-8674(18)31513-7 pmid: 30550791 |
[23] | 俞东红, 曹华, 王心睿. 类器官的研究进展及应用[J]. 生物工程学报, 2021, 37(11): 3961-3974. |
YU D H, CAO H, WANG X R. Advances and applications of organoids: a review[J]. Chin J Biotechnol, 2021, 37(11): 3961-3974. | |
[24] | DONG M, BÖPPLE K, THIEL J, et al. Perfusion air culture of precision-cut tumor slices: an ex vivo system to evaluate individual drug response under controlled culture conditions[J]. Cells, 2023, 12(5): 807. |
[25] | TIAN J W, YANG J, CHEN T W, et al. Generation of human endometrial assembloids with a luminal epithelium using air-liquid interface culture methods[J]. Adv Sci, 2023, 10(30): e2301868. |
[26] | QU J J, KALYANI F S, LIU L, et al. Tumor organoids: synergistic applications, current challenges, and future prospects in cancer therapy[J]. Cancer Commun, 2021, 41(12): 1331-1353. |
[27] |
PHAN N, HONG J J, TOFIG B, et al. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids[J]. Commun Biol, 2019, 2: 78.
doi: 10.1038/s42003-019-0305-x pmid: 30820473 |
[28] | GOTIMER K, CHEN H, LEISEROWITZ G S, et al. Short-term organoid culture for drug sensitivity testing in high-grade serous ovarian cancer[J]. Gynecol Oncol, 2019, 153(3): e13. |
[29] |
NANKI Y, CHIYODA T, HIRASAWA A, et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing[J]. Sci Rep, 2020, 10(1): 12581.
doi: 10.1038/s41598-020-69488-9 pmid: 32724113 |
[30] |
HILL S J, DECKER B, ROBERTS E A, et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids[J]. Cancer Discov, 2018, 8(11): 1404-1421.
doi: 10.1158/2159-8290.CD-18-0474 pmid: 30213835 |
[31] |
MAENHOUDT N, DEFRAYE C, BORETTO M, et al. Developing organoids from ovarian cancer as experimental and preclinical models[J]. Stem Cell Reports, 2020, 14(4): 717-729.
doi: S2213-6711(20)30094-1 pmid: 32243841 |
[32] | DE WITTE C J, et al. ESPEJO VALLE-INCLAN J, HAMI N, Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses[J]. Cell Rep, 2020, 31(11): 107762. |
[33] | BAR-EPHRAIM Y E, KRETZSCHMAR K, CLEVERS H. Organoids in immunological research[J]. Nat Rev Immunol, 2020, 20(5): 279-293. |
[34] |
中国抗癌协会妇科肿瘤专业委员会. 妇科恶性肿瘤多学科诊疗中国专家共识(2022年版)[J]中国癌症杂志. 2022, 32(8): 747-56.
doi: 10.19401/j.cnki.1007-3639.2022.08.010 |
China Anti-Cancer Association Gynecologic Oncology Professional Committee. Consensus of Chinese experts on multidisciplinary team of gynecological malignant tumors (2022 edition)[J]. China Oncology, 2022, 32(8):747-56.
doi: 10.19401/j.cnki.1007-3639.2022.08.010 |
|
[35] | HIGA A, TAKAHASHI N, HIYAMA G, et al. High-throughput in vitro assay using patient-derived tumor organoids[J]. J Vis Exp, 2021, (172). |
[36] |
GIRDA E, HUANG E C, LEISEROWITZ G S, et al. The use of endometrial cancer patient-derived organoid culture for drug sensitivity testing is feasible[J]. Int J Gynecol Cancer, 2017, 27(8): 1701-1707.
doi: 10.1097/IGC.0000000000001061 pmid: 28683005 |
[37] |
TAMURA H, HIGA A, HOSHI H, et al. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues[J]. Oncol Rep, 2018, 40(2): 635-646.
doi: 10.3892/or.2018.6501 pmid: 29917168 |
[38] |
DAS S, BABU A, MEDHA T, et al. Molecular mechanisms augmenting resistance to current therapies in clinics among cervical cancer patients[J]. Med Oncol, 2023, 40(5): 149.
doi: 10.1007/s12032-023-01997-9 pmid: 37060468 |
[39] | SEOL H S, OH J H, CHOI E, et al. Preclinical investigation of patient-derived cervical cancer organoids for precision medicine[J]. J Gynecol Oncol, 2023, 34(3): e35. |
[40] | FONG E L S, TOH T B, LIN Q X X, et al. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer[J]. Biomaterials, 2018, 159: 229-240. |
[41] |
BORETTO M, COX B, NOBEN M, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability[J]. Development, 2017, 144(10): 1775-1786.
doi: 10.1242/dev.148478 pmid: 28442471 |
[42] | MARX V. Closing in on cancer heterogeneity with organoids[J]. Nat Methods, 2024, 21(4): 551-554. |
[43] |
GODBOLE N, QUINN A, CARRION F, et al. Extracellular vesicles as a potential delivery platform for CRISPR-Cas based therapy in epithelial ovarian cancer[J]. Semin Cancer Biol, 2023, 96: 64-81.
doi: 10.1016/j.semcancer.2023.10.002 pmid: 37820858 |
[44] | BUCKLEY D N, LEWINGER J P, GOODEN G, et al. OvaPrint-a cell-free DNA methylation liquid biopsy for the risk assessment of high-grade serous ovarian cancer[J]. Clin Cancer Res, 2023, 29(24): 5196-5206. |
[45] | SHI H Y, KOWALCZEWSKI A, VU D, et al. Organoid intelligence: integration of organoid technology and artificial intelligence in the new era of in vitro models[J]. Med Nov Technol Devices, 2024, 21: 100276. |
[46] |
YAO Q G, CHENG S, PAN Q L, et al. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine[J]. MedComm, 2024, 5(10): e735.
doi: 10.1002/mco2.735 pmid: 39309690 |
[1] | WANG Zifei, DING Yahui, LI Yan, LUAN Xin, TANG Min. Application of 3D bioprinting in cancer research and tissue engineering [J]. China Oncology, 2024, 34(9): 814-826. |
[2] | CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models [J]. China Oncology, 2024, 34(6): 590-597. |
[3] | TANG Nan, HUANG Huixia, LIU Xiaojian. Integrated single-cell sequencing and transcriptome sequencing to reveal a 9-gene prognostic signature of immune cells in colorectal cancer [J]. China Oncology, 2024, 34(6): 548-560. |
[4] | WU Hongji, WANG Haixia, WANG Ling, LUO Xiaogang, ZOU Dongling. Application progress and challenges of artificial intelligence in organoid research [J]. China Oncology, 2024, 34(2): 210-219. |
[5] | The Society of Cancer Multidisciplinary Diagnosis and Treatment, China Anti-Cancer Association, The Society of Cancer Endocrinology, China Anti-Cancer Association. Chinese experts consensus on quality control standards for tumor organoids diagnosis and treatment platform (2022 version) [J]. China Oncology, 2022, 32(7): 657-668. |
[6] | WANG Ruotong, WANG Xin, SHEN Bo. Application and progress of organoids in tumor translational medicine [J]. China Oncology, 2022, 32(11): 1105-1114. |
[7] | SHANG Kun, ZHANG Peng, ZHOU Lu, WANG Zhen, CAO Yue, LI Ying-yi. Screening of Pim kinase inhibitors by the establishment of high-throughput ELISA system [J]. China Oncology, 2013, 23(4): 260-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd