China Oncology ›› 2024, Vol. 34 ›› Issue (6): 590-597.doi: 10.19401/j.cnki.1007-3639.2024.06.007
• Review • Previous Articles Next Articles
CHEN Hong1,2,3(), CAO Zhiyun1,2,3(
)(
)
Received:
2024-01-03
Revised:
2024-04-11
Online:
2024-06-30
Published:
2024-07-16
Share article
CLC Number:
CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models[J]. China Oncology, 2024, 34(6): 590-597.
[1] | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. |
[2] | BOJ S F, HWANG C I, BAKER L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338. |
[3] |
BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12): 1424-1435.
doi: 10.1038/nm.4438 pmid: 29131160 |
[4] |
CHO J, LEE H, RAH W, et al. From engineered heart tissue to cardiac organoid[J]. Theranostics, 2022, 12(6): 2758-2772.
doi: 10.7150/thno.67661 pmid: 35401829 |
[5] | KIM M, MUN H, SUNG C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nat Commun, 2019, 10(1): 3991. |
[6] |
SCHUTGENS F, ROOKMAAKER M B, MARGARITIS T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling[J]. Nat Biotechnol, 2019, 37(3): 303-313.
doi: 10.1038/s41587-019-0048-8 pmid: 30833775 |
[7] |
SALEWSKIJ K, PENNINGER J M. Blood vessel organoids for development and disease[J]. Circ Res, 2023, 132(4): 498-510.
doi: 10.1161/CIRCRESAHA.122.321768 pmid: 36795852 |
[8] |
DENG J, ZHANG J, GAO K, et al. Human-induced pluripotent stem cell-derived cerebral organoid of leukoencephalopathy with vanishing white matter[J]. CNS Neurosci Ther, 2023, 29(4): 1049-1066.
doi: 10.1111/cns.14079 pmid: 36650674 |
[9] | DA COSTA B L, LI Y, LEVI S R, et al. Generation of CRB1 RP patient-derived iPSCs and a CRISPR/Cas9-mediated homology-directed repair strategy for the CRB1 c.2480G>T mutation[J]. Adv Exp Med Biol, 2023, 1415: 571-576. |
[10] |
SAJJAD H, IMTIAZ S, NOOR T, et al. Cancer models in preclinical research: a chronicle review of advancement in effective cancer research[J]. Animal Model Exp Med, 2021, 4(2): 87-103.
doi: 10.1002/ame2.12165 pmid: 34179717 |
[11] | HUCH M, BONFANTI P, BOJ S F, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis[J]. EMBO J, 2013, 32(20): 2708-2721. |
[12] | GREGGIO C, FRANCESCHI F D, FIGUEIREDO-LARSEN M, et al. Artificial three-dimensional niches deconstruct pancreas development in vitro[J]. Development, 2013, 140(21): 4452-4462. |
[13] |
TIRIAC H, BUCOBO J C, TZIMAS D, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment[J]. Gastrointest Endosc, 2018, 87(6): 1474-1480.
doi: S0016-5107(18)30019-1 pmid: 29325707 |
[14] |
CHOI W, KIM Y H, WOO S M, et al. Establishment of patient-derived organoids using ascitic or pleural fluid from cancer patients[J]. Cancer Res Treat, 2023, 55(4): 1077-1086.
doi: 10.4143/crt.2022.1630 pmid: 37309112 |
[15] |
PISHVAIAN M J, BENDER R J, HALVERSON D, et al. Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative[J]. Clin Cancer Res, 2018, 24(20): 5018-5027.
doi: 10.1158/1078-0432.CCR-18-0531 pmid: 29954777 |
[16] |
Cancer Genome Atlas Research Network Electronic Address: Andrew_Aguirre@Dfci Harvard Edu, Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2017, 32(2): 185-203.e13.
doi: S1535-6108(17)30299-4 pmid: 28810144 |
[17] |
HE J, BLAIR A B, GROOT V P, et al. Is a pathological complete response following neoadjuvant chemoradiation associated with prolonged survival in patients with pancreatic cancer?[J]. Ann Surg, 2018, 268(1): 1-8.
doi: 10.1097/SLA.0000000000002672 pmid: 29334562 |
[18] | SEPPÄLÄ T T, ZIMMERMAN J W, SERENI E, et al. Patient-derived organoid pharmacotyping is a clinically tractable strategy for precision medicine in pancreatic cancer[J]. Ann Surg, 2020, 272(3): 427-435. |
[19] |
VAES R D W, VAN DIJK D P J, WELBERS T T J, et al. Generation and initial characterization of novel tumour organoid models to study human pancreatic cancer-induced cachexia[J]. J Cachexia Sarcopenia Muscle, 2020, 11(6): 1509-1524.
doi: 10.1002/jcsm.12627 pmid: 33047901 |
[20] | CHOI S H, PARK S H, KIM K W, et al. Progression of unresected intraductal papillary mucinous neoplasms of the pancreas to cancer: a systematic review and Meta-analysis[J]. Clin Gastroenterol Hepatol, 2017, 15(10): 1509-1520.e4. |
[21] |
ELTA G H, ENESTVEDT B K, SAUER B G, et al. ACG clinical guideline: diagnosis and management of pancreatic cysts[J]. Am J Gastroenterol, 2018, 113(4): 464-479.
doi: 10.1038/ajg.2018.14 pmid: 29485131 |
[22] | IDENO N, YAMAGUCHI H, GHOSH B, et al. GNASR201C induces pancreatic cystic neoplasms in mice that express activated Kras by inhibiting YAP1 signaling[J]. Gastroenterology, 2018, 155(5): 1593-1607.e12. |
[23] | KOPP J L, DUBOIS C L, SCHAEFFER D F, et al. Loss of pten and activation of Kras synergistically induce formation of intraductal papillary mucinous neoplasia from pancreatic ductal cells in mice[J]. Gastroenterology, 2018, 154(5): 1509-1523.e5. |
[24] |
BEATO F, REVERÓN D, DEZSI K B, et al. Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas[J]. Lab Invest, 2021, 101(2): 204-217.
doi: 10.1038/s41374-020-00494-1 pmid: 33037322 |
[25] | HUANG B, TRUJILLO M A, FUJIKURA K, et al. Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms[J]. J Pathol, 2020, 252(3): 252-262. |
[26] | KATO H, TATEISHI K, FUJIWARA H, et al. MNX1-HNF1B axis is indispensable for intraductal papillary mucinous neoplasm lineages[J]. Gastroenterology, 2022, 162(4): 1272-1287.e16. |
[27] | DESAI R, HUANG L, GONZALEZ R S, et al. Oncogenic GNAS uses PKA-dependent and independent mechanisms to induce cell proliferation in human pancreatic ductal and acinar organoids[J]. Mol Cancer Res, 2024, 22(5): 440-451. |
[28] | ROMERO-CALVO I, WEBER C R, RAY M, et al. Human organoids share structural and genetic features with primary pancreatic adenocarcinoma tumors[J]. Mol Cancer Res, 2019, 17(1): 70-83. |
[29] | GROSSMAN J E, MUTHUSWAMY L, HUANG L, et al. Organoid sensitivity correlates with therapeutic response in patients with pancreatic cancer[J]. Clin Cancer Res, 2022, 28(4): 708-718. |
[30] |
TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discov, 2018, 8(9): 1112-1129.
doi: 10.1158/2159-8290.CD-18-0349 pmid: 29853643 |
[31] |
FARSHADI E A, CHANG J, SAMPADI B, et al. Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma[J]. Clin Cancer Res, 2021, 27(23): 6602-6612.
doi: 10.1158/1078-0432.CCR-21-1681 pmid: 34580113 |
[32] | SHUKLA H D, DUKIC T, ROY S, et al. Pancreatic cancer derived 3D organoids as a clinical tool to evaluate the treatment response[J]. Front Oncol, 2022, 12: 1072774. |
[33] |
KOIKAWA K, KIBE S, SUIZU F, et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy[J]. Cell, 2021, 184(18): 4753-4771.e27.
doi: 10.1016/j.cell.2021.07.020 pmid: 34388391 |
[34] |
GRANAT L M, KAMBHAMPATI O, KLOSEK S, et al. The promises and challenges of patient-derived tumor organoids in drug development and precision oncology[J]. Animal Model Exp Med, 2019, 2(3): 150-161.
doi: 10.1002/ame2.12077 pmid: 31773090 |
[35] | ZHOU T X, XIE Y J, HOU X P, et al. Irbesartan overcomes gemcitabine resistance in pancreatic cancer by suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis[J]. J Exp Clin Cancer Res, 2023, 42(1): 111. |
[36] |
SEINO T, KAWASAKI S, SHIMOKAWA M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression[J]. Cell Stem Cell, 2018, 22(3): 454-467.e6.
doi: S1934-5909(17)30510-6 pmid: 29337182 |
[37] | SEPPÄLÄ T T, ZIMMERMAN J W, SURI R, et al. Precision medicine in pancreatic cancer: patient-derived organoid pharmacotyping is a predictive biomarker of clinical treatment response[J]. Clin Cancer Res, 2022, 28(15): 3296-3307. |
[38] |
DEMYAN L, HABOWSKI A N, PLENKER D, et al. Pancreatic cancer patient-derived organoids can predict response to neoadjuvant chemotherapy[J]. Ann Surg, 2022, 276(3): 450-462.
doi: 10.1097/SLA.0000000000005558 pmid: 35972511 |
[39] | HIRT C K, BOOIJ T H, GROB L, et al. Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label treatment[J]. Cell Genom, 2022, 2(2): 100095. |
[40] | DRIEHUIS E, GRACANIN A, VRIES R G J, et al. Establishment of pancreatic organoids from normal tissue and tumors[J]. STAR Protoc, 2020, 1(3): 100192. |
[41] | KUMANO K, NAKAHASHI H, LOUPHRASITTHIPHOL P, et al. Hypoxia at 3D organoid establishment selects essential subclones within heterogenous pancreatic cancer[J]. Front Cell Dev Biol, 2024, 12: 1327772. |
[42] | KRIEGER T G, BLANC S L, JABS J, et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy[J]. Nat Commun, 2021, 12(1): 5826. |
[43] | JABS J, ZICKGRAF F M, PARK J, et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations[J]. Mol Syst Biol, 2017, 13(11): 955. |
[44] | XU H X, LYU X D, YI M, et al. Organoid technology and applications in cancer research[J]. J Hematol Oncol, 2018, 11(1): 116. |
[1] | WANG Zifei, DING Yahui, LI Yan, LUAN Xin, TANG Min. Application of 3D bioprinting in cancer research and tissue engineering [J]. China Oncology, 2024, 34(9): 814-826. |
[2] | TANG Nan, HUANG Huixia, LIU Xiaojian. Integrated single-cell sequencing and transcriptome sequencing to reveal a 9-gene prognostic signature of immune cells in colorectal cancer [J]. China Oncology, 2024, 34(6): 548-560. |
[3] | JIANG Yuanyuan, WEI Wenfei, WU Jingya, LI Huawen. Application of organoids in drug screening of gynecological malignant tumors [J]. China Oncology, 2024, 34(11): 1053-1060. |
[4] | TAN Xiaolang, YAO Sha, WANG Guihua, PENG Luogen. Research on uPAR promoting proliferation, migration, and chemoresistance of pancreatic cancer by inhibiting autophagy via MAPK signaling [J]. China Oncology, 2024, 34(10): 944-956. |
[5] | LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023 [J]. China Oncology, 2024, 34(1): 1-12. |
[6] | JIANG Jinling, ZHOU Chenfei, WANG Chao, ZHAO Liqin, WU Junwei, ZHANG Jun. Advanced progress in research and diagnosis of gastric cancer in 2022 [J]. China Oncology, 2023, 33(4): 303-314. |
[7] | ZENG Cheng, ZHANG Jian. Leading research progress and prospect of antibody-drug conjugate in pancreatic cancer in 2022 [J]. China Oncology, 2023, 33(3): 235-240. |
[8] | FU Qingsheng, JIN Lei, ZHANG Xudong, XU Yingchen, ZHU Chunfu, QIN Xihu, WU Baoqiang. Effect of tRF-Pro-CGG on the biological behavior of mouse pancreatic cancer cells and its molecular mechanism [J]. China Oncology, 2023, 33(3): 241-249. |
[9] | YUE Ming, WANG Liwei, CUI Jiujie. Research progress on the mechanism of organ-specific lung metastasis in pancreatic cancer [J]. China Oncology, 2023, 33(11): 1026-1031. |
[10] | JIA Yuming, YE Zeng, DENG Yanli, LI Shengchao, ZHANG Zhilei, WANG Chao, XU Xiaowu, QIN Yi, PENG Li. The research on FBW7 gene enhances antitumor effect of paclitaxel on pancreatic cancer through GSDME-mediated pyroptosis [J]. China Oncology, 2023, 33(10): 889-897. |
[11] | WANG Xu, CHENG He, LIU Chen, YU Xianjun. New progress in basic research, clinical diagnosis and treatment of pancreatic cancer in 2022 [J]. China Oncology, 2023, 33(1): 1-13. |
[12] | ZHUANG Han, LING Chifang, WANG Jiazhou, HAN Xu, JIANG Rui, HU Weigang. Radiation therapy in locally advanced pancreatic cancer with 75 Gy simultaneous integrated boost: a dosimetric feasibility study [J]. China Oncology, 2023, 33(1): 54-60. |
[13] | LI Yujie, CHEN Hao. Potential of targeting TROP2 in the treatment of pancreatic cancer [J]. China Oncology, 2022, 32(3): 268-273. |
[14] | WU Mengyin, WU Chunxiao, PANG Yi, WANG Chunfang, GU Kai, GONG Yangming, BAO Pingping, SHI Liang, DOU Jianming, XIANG Yongmei, SHI Yan. Incidence and mortality of pancreatic cancer in Shanghai 2016 and epidemic trend analysis from 2002 to 2016 [J]. China Oncology, 2022, 32(2): 97-105. |
[15] | WANG Ruotong, WANG Xin, SHEN Bo. Application and progress of organoids in tumor translational medicine [J]. China Oncology, 2022, 32(11): 1105-1114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd