China Oncology ›› 2025, Vol. 35 ›› Issue (1): 40-48.doi: 10.19401/j.cnki.1007-3639.2025.01.005
• Specialist' Commentary • Previous Articles Next Articles
Received:
2024-12-13
Revised:
2025-01-21
Online:
2025-01-30
Published:
2025-02-17
Contact:
YANG Hui
Supported by:
Share article
CLC Number:
LI Ruping, YANG Hui. Current status and future prospects of clinical trials for radioiodine-refractory thyroid cancer[J]. China Oncology, 2025, 35(1): 40-48.
[1] | HAMIDI S, HOFMANN M C, IYER P C, et al. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance[J]. Front Endocrinol (Lausanne), 2023, 14: 1176731. |
[2] | JI X Y, LIANG W L, LV G X, et al. Efficacy and safety of targeted therapeutics for patients with radioiodine-refractory differentiated thyroid cancer: systematic review and network meta-analysis[J]. Front Pharmacol, 2022, 13: 933648. |
[3] | BUFFET C, WASSERMANN J, HECHT F, et al. Redifferentiation of radioiodine-refractory thyroid cancers[J]. Endocr Relat Cancer, 27(5): R113-R132. |
[4] | SONG M Y, LIU Q, SUN W, et al. Crosstalk between thyroid carcinoma and tumor-correlated immune cells in the tumor microenvironment[J]. Cancers (Basel), 2023, 15(10): 2863. |
[5] | EZZAT S, PASTERNAK J D, RAJARAMAN M, et al. Multidisciplinary Canadian consensus on the multimodal management of high-risk and radioactive iodine-refractory thyroid carcinoma[J]. Front Oncol, 2024, 14: 1437360. |
[6] | WEITZMAN S P, SHERMAN S I. Novel drug treatments of progressive radioiodine-refractory differentiated thyroid cancer[J]. Endocrinol Metab Clin North Am, 2019, 48(1): 253-268. |
[7] |
VACCHER E, SCHIOPPA O, MARTELLOTTA F, et al. Safety profiles and pharmacovigilance considerations for recently patented anticancer drugs: advanced thyroid cancer[J]. Recent Pat Anticancer Drug Discov, 2019, 14(3): 226-241.
doi: 10.2174/1574892814666190726143011 pmid: 31362663 |
[8] | SCHLUMBERGER M, TAHARA M, WIRTH L J, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630. |
[9] | DICKERSON K, MILAS M, METZGER R, et al. Neoadjuvant systemic therapy for inoperable differentiated thyroid cancers: Impact on tumor resectability[J]. Surgery, 2025, 177: 108836. |
[10] |
KIYOTA N, TAHARA M, ROBINSON B, et al. Impact of baseline tumor burden on overall survival in patients with radioiodine-refractory differentiated thyroid cancer treated with lenvatinib in the SELECT global phase 3 trial[J]. Cancer, 2022, 128(12): 2281-2287.
doi: 10.1002/cncr.34181 pmid: 35380178 |
[11] | LIN Y, QIN S, LI Z, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial[J]. JAMA Oncol, 2022, 8(2): 242-250. |
[12] | LI D P, CHI Y, CHEN X H, et al. Anlotinib in locally advanced or metastatic medullary thyroid carcinoma: a randomized, double-blind phase ⅡB trial[J]. Clin Cancer Res, 2021, 27(13): 3567-3575. |
[13] | LIN Y S, QIN S K, YANG H, et al. Multicenter randomized double-blind phase Ⅲ trial of donafenib in progressive radioactive iodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2023, 29(15): 2791-2799. |
[14] |
XIA W, JIE W. ZEB1-AS1/miR-133a-3p/LPAR3/EGFR axis promotes the progression of thyroid cancer by regulating PI3K/AKT/mTOR pathway[J]. Cancer Cell Int, 2020, 20: 94.
doi: 10.1186/s12935-020-1098-1 pmid: 32231464 |
[15] | LASOLLE H, SCHIAVO A, TOURNEUR A, et al. Dual targeting of MAPK and PI3K pathways unlocks redifferentiation of Braf-mutated thyroid cancer organoids[J]. Oncogene, 2024, 43: 155-170. |
[16] | XU Q Q, WANG J Q, MAO Y T, et al. Combined BRAF and PIM1 inhibitory therapy for papillary thyroid carcinoma based on BRAF V600E regulation of PIM1: synergistic effect and metabolic mechanisms[J]. Neoplasia, 2024, 52: 100996. |
[17] | WEN S S, WU Y J, WANG J Y, et al. BRAFV600E/p-ERK/p-DRP1(Ser616) promotes tumor progression and reprogramming of glucose metabolism in papillary thyroid cancer[J]. Thyroid®, 2024, 34(10): 1246-1259. |
[18] | KLOOS R T, RINGEL M D, KNOPP M V, et al. Phase Ⅱ trial of sorafenib in metastatic thyroid cancer[J]. J Clin Oncol, 2009, 27(10): 1675-1684. |
[19] | BARBARO D, FORLEO R, PROFILO M A, et al. Neoadjuvant treatment with lenvatinib and pembrolizumab in a BRAF V600E-mutated anaplastic thyroid cancer: a case report[J]. Front Endocrinol (Lausanne), 2024, 15: 1389294. |
[20] | FRENCH J, HAUGEN B, WORDEN F, et al. Combination targeted therapy with pembrolizumab and lenvatinib in progressive, radioiodine-refractory differentiated thyroid cancers[J]. Clin Cancer Res, 2024, 30(17): 3757-3767. |
[21] | PINHEIRO NETO A, LUCCHESI H L, VALSECCHI V A D S, et al. Immunotherapy for patients with thyroid cancer: a comprehensive appraisal[J]. Chin Clin Oncol, 2024, 13(3): 36. |
[22] |
KLEINENDORST S C, OOSTERWIJK E, BUSSINK J, et al. Combining targeted radionuclide therapy and immune checkpoint inhibition for cancer treatment[J]. Clin Cancer Res, 2022, 28(17): 3652-3657.
doi: 10.1158/1078-0432.CCR-21-4332 pmid: 35471557 |
[23] | WANG Z Q, WANG B J, CAO X T. Epigenetic checkpoint blockade: new booster for immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1): 281. |
[24] | MIAO Y Q, XU H, WANG S. PartIES: a disease subtyping framework with partition-level integration using diffusion-enhanced similarities from multi-omics Data[J]. Brief Bioinform, 2024, 26(1): bbae609. |
[25] | ALVES L F, DA SILVA I N, DE MELLO D C, et al. Epigenetic regulation of DLK1-DIO3 region in thyroid carcinoma[J]. Cells, 2024, 13(12): 1001. |
[26] | LECHNER M G, BRENT G A. A new twist on a classic: enhancing radioiodine uptake in advanced thyroid cancer[J]. Clin Cancer Res, 2024, 30(7): 1220-1222. |
[27] | READ M, BROOKES K, ZHA L, et al. Combined vorinostat and chloroquine inhibit sodium-iodide symporter endocytosis and enhance radionuclide uptake in vivo[J]. Clin Cancer Research, 2024, 30(7): 1352-1366. |
[28] | ZHAO Z Y, HERMAN J G, BROCK M V, et al. Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling[J]. PLoS One, 2014, 9(11): e112336. |
[29] | NILUBOL N, MERKEL R, YANG L, et al. A phase Ⅱ trial of valproic acid in patients with advanced, radioiodine-resistant thyroid cancers of follicular cell origin[J]. Clin Endocrinol (Oxf), 2017, 86(1): 128-133. |
[30] |
ZHANG G Q, XI C, JU N T, et al. Targeting glutamine metabolism exhibits anti-tumor effects in thyroid cancer[J]. J Endocrinol Invest, 2024, 47(8): 1953-1969.
doi: 10.1007/s40618-023-02294-y pmid: 38386265 |
[31] | LI X R, LIU Y, LIU J, et al. STAG2 inactivation reprograms glutamine metabolism of BRAF-mutant thyroid cancer cells[J]. Cell Death Dis, 2023, 14(7): 454. |
[32] | HUO N, CONG R, SUN Z J, et al. STAT3/LINC00671 axis regulates papillary thyroid tumor growth and metastasis via LDHA-mediated glycolysis[J]. Cell Death Dis, 2021, 12(9): 799. |
[33] | HOU X K, SHI X L, ZHANG W, et al. LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma[J]. Cell Death Dis, 2021, 12(4): 347. |
[34] |
MARTINELLI E, TROIANI T, D’AIUTO E, et al. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells[J]. Int J Cancer, 2013, 133(9): 2089-2101.
doi: 10.1002/ijc.28236 pmid: 23629727 |
[35] |
LI A M, ZHANG R B, ZHANG Y C, et al. BEZ235 increases sorafenib inhibition of hepatocellular carcinoma cells by suppressing the PI3K/AKT/mTOR pathway[J]. Am J Transl Res, 2019, 11(9): 5573-5585.
pmid: 31632530 |
[36] | LIU J J, LIU R Y, SHEN X P, et al. The genetic duet of BRAF V600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer[J]. J Nucl Med, 2019, 61: 177-182. |
[37] | SMALLRIDGE R C, CHINDRIS A M, ASMANN Y W, et al. RNA sequencing identifies multiple fusion transcripts, differentially expressed genes, and reduced expression of immune function genes in BRAF (V600E) mutant vs BRAF wild-type papillary thyroid carcinoma[J]. J Clin Endocrinol Metab, 2014, 99(2): E338-E347. |
[38] | SUBBIAH V, HU M I, MANSFIELD A S, et al. Pralsetinib in patients with advanced/metastatic rearranged during transfection (RET)-altered thyroid cancer: updated efficacy and safety data from the ARROW study[J]. Thyroid®, 2024, 34(1): 26-40. |
[39] | HU M T, SHI X-K, SONG P X. Collaborative inference for treatment effect with distributed data-sharing management in multicenter studies[J]. Stat Med, 2024, 43(11): 2263-2279. |
[40] | QU J, WANG Y, XIONG C X, et al. In vivo gene editing of T-cells in lymph nodes for enhanced cancer immunotherapy[J]. Nat Commun, 2024, 15(1): 10218. |
[41] |
HWANG E, KRUHLAK M, WONG N, et al. Attenuation of aggressive tumor progression of anaplastic thyroid cancer by p53[J]. Am J Cancer Res, 2024, 14(9): 4429-4444.
doi: 10.62347/KXJJ8824 pmid: 39417187 |
[42] | READ M L, BROOKES K, ZHA L, et al. Combined vorinostat and chloroquine inhibit sodium iodide symporter endocytosis and enhance radionuclide uptake in vivo[J]. Clin Cancer Res Off J Am Assoc Cancer Res, 2023, 30: 1352-1366. |
[43] | ZHANG K, WANG J Y, HE Z Y, et al. Epigenetic targets and their inhibitors in thyroid cancer treatment[J]. Pharmaceuticals (Basel), 2023, 16(4): 559. |
[44] | FU H, HUANG J X, SUN L, et al. FAP-targeted radionuclide therapy of advanced radioiodine-refractory differentiated thyroid cancer with multiple cycles of 177Lu-FAPI-46[J]. Clin Nucl Med, 2022, 47(10): 906-907. |
[45] | CHEN Y, ZANG J, WU Z N, et al. 68Ga-FAPI-RGD PET/CT detected skull metastasis better than 18F-FDG in a patient with radioiodine-refractory differentiated thyroid cancer[J]. Clin Nucl Med, 2024, 49(10): 964-965. |
[46] | HELISCH A, KRATOCHWIL C, KLEIST C, et al. Feasibility, tolerability, and preliminary clinical response of fractionated radiopharmaceutical therapy with 213Bi-FAPI-46: pilot experience in patients with end-stage, progressive metastatic tumors[J]. J Nucl Med, 2024, 65(12): 1917-1922. |
[47] | BORGONJE P E, ANDREWS L M, VAN DEN BRAND J G, et al. [68Ga] Ga-FAPI-46 PET/CT as an early indicator of complete remission in a patient treated with pembrolizumab for stage Ⅳ NSCLC[J]. Eur J Nucl Med Mol Imaging, 2024. |
[48] | OSTROMINSKI J W, YADA R C, SATO N, et al. CRISPR/Cas9-mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell-derived cardiomyocytes[J]. Stem Cells Transl Med, 2020, 9(10): 1203-1217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd