China Oncology ›› 2024, Vol. 34 ›› Issue (5): 509-516.doi: 10.19401/j.cnki.1007-3639.2024.05.008
• Review • Previous Articles Next Articles
XIN Meiyi1(), LIN Yuhong2, ZHAO Kai1,2(
)
Received:
2024-03-04
Revised:
2024-04-03
Online:
2024-05-30
Published:
2024-06-07
Contact:
ZHAO Kai
Share article
CLC Number:
XIN Meiyi, LIN Yuhong, ZHAO Kai. Progress in the development of mRNA vaccine and its delivery systems for anti-tumor immunotherapy[J]. China Oncology, 2024, 34(5): 509-516.
Tab. 1
Tumor mRNA vaccines entering clinical trials"
ClinicalTrials.gov identifier | Phase | Disease | Loaded mRNA | Delivery vehicle |
---|---|---|---|---|
NCT01995708[ | Ⅰ | Multiple myeloma | Cancer-testis antigen 7, melanoma antigen-A3, and Wilms tumor gene (WT1) mRNA | Langerhans-type dendritic cells |
NCT01446731 | Ⅱ | Prostatic neoplasms | PSA, PAP, survivin and hTERT mRNA | Dendritic cells |
NCT00890032 | Ⅰ | Recurrent central nervous system neoplasm | TSA mRNA | Dendritic cells |
NCT02808416 | Ⅰ | Brain cancer, neoplasm metastases | TSA mRNA | Dendritic cells |
NCT00961844 | Ⅰ/Ⅱ | Metastatic malignant melanoma | Survivin and hTERT mRNA | Dendritic cells |
NCT00514189 | Ⅰ | Leukemia | Acute myelogenous leukemia lysate plus mRNA | Dendritic Cells |
NCT01456104 | Ⅰ | Melanoma | TSA mRNA | Langerhans-type dendritic cells |
NCT00834002 | Ⅰ | Acute myeloid leukemia | WT1 mRNA | Dendritic cells |
NCT00639639 | Ⅰ | Prostatic neoplasms | Cytomegalovirus (CMV) pp65-lysosomal-associated membrane protein (LAMP) mRNA | Dendritic cells |
NCT01197625 | Ⅰ/Ⅱ | Prostate cancer | TSA, hTERT and survivin mRNA | Dendritic cells |
NCT01334047 | Ⅰ/Ⅱ | Recurrent epithelial ovarian cancer | TSA, hTERT and survivin. mRNA | Dendritic cells |
NCT00626483 | Ⅰ | Malignant neoplasms brain | CMV pp65-LAMP mRNA | Dendritic cells |
NCT00846456 | Ⅰ/Ⅱ | Glioblastoma, brain tumor | TSA mRNA | Dendritic cells |
NCT02366728 | Ⅱ | Glioblastoma, astrocytoma, grade Ⅳ, giant cell glioblastoma | CMV pp65-LAMP mRNA | Dendritic cells |
NCT04163094 | Ⅰ | Ovarian cancer | TSA mRNA | Liposome |
NCT03927222 | Ⅱ | Glioblastoma | CMV pp65-LAMP mRNA | Dendritic cells |
NCT02465268 | Ⅱ | Glioblastoma multiforme, glioblastoma, malignant glioma | pp65-shLAMP | Dendritic cells |
NCT00228189[ | Ⅰ/Ⅱ | Colorectal cancer, liver metastases | CEA mRNA | Dendritic cells |
NCT03688178 | Ⅱ | Glioblastoma | CMV pp65-LAMP mRNA | Dendritic cells |
NCT00978913 | Ⅰ | Breast cancer, malignant melanoma | Survivin, hTERT and p53 mRNA | Dendritic cells |
[1] | LIU Y X, YAN Q J, ZENG Z Y, et al. Advances and prospects of mRNA vaccines in cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(2): 189068. |
[2] | ZHANG A, JI Q M, SHENG X, et al. mRNA vaccine in gastrointestinal tumors: immunomodulatory effects and immunotherapy[J]. Biomedecine Pharmacother, 2023, 166: 115361. |
[3] |
WOLCHOK J. Putting the immunologic brakes on cancer[J]. Cell, 2018, 175(6): 1452-1454.
doi: S0092-8674(18)31465-X pmid: 30500529 |
[4] | SHI S J, HUANG J C, KUANG Y, et al. Stability and Hopf bifurcation of a tumor-immune system interaction model with an immune checkpoint inhibitor[J]. Commun Nonlinear Sci Numer Simul, 2023, 118: 106996. |
[5] |
ZHU C J, WU Q, SHENG T, et al. Rationally designed approaches to augment CAR-T therapy for solid tumor treatment[J]. Bioact Mater, 2024, 33: 377-395.
doi: 10.1016/j.bioactmat.2023.11.002 pmid: 38059121 |
[6] | LIU C P, WANG Y C, LI L M, et al. Engineered extracellular vesicles and their mimetics for cancer immunotherapy[J]. J Control Release, 2022, 349: 679-698. |
[7] | LIU J, FU M Y, WANG M N, et al. Cancer vaccines as promising immuno-therapeutics: platforms and current progress[J]. J Hematol Oncol, 2022, 15(1): 28. |
[8] |
GUO C Q, MANJILI M H, SUBJECK J R, et al. Therapeutic cancer vaccines: past, present, and future[J]. Adv Cancer Res, 2013, 119: 421-475.
doi: 10.1016/B978-0-12-407190-2.00007-1 pmid: 23870514 |
[9] |
TÜRECI Ö, VORMEHR M, DIKEN M, et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines[J]. Clin Cancer Res, 2016, 22(8): 1885-1896.
doi: 10.1158/1078-0432.CCR-15-1509 pmid: 27084742 |
[10] | QIN X Y, YANG T, XU H B, et al. Dying tumor cells-inspired vaccine for boosting humoral and cellular immunity against cancer[J]. J Control Release, 2023, 359: 359-372. |
[11] |
GEBRE M S, BRITO L A, TOSTANOSKI L H, et al. Novel approaches for vaccine development[J]. Cell, 2021, 184(6): 1589-1603.
doi: 10.1016/j.cell.2021.02.030 pmid: 33740454 |
[12] |
ZHANG X Y, CUI H Q, ZHANG W J, et al. Engineered tumor cell-derived vaccines against cancer: the art of combating poison with poison[J]. Bioact Mater, 2023, 22: 491-517.
doi: 10.1016/j.bioactmat.2022.10.016 pmid: 36330160 |
[13] | PARDI N, HOGAN M J, PORTER F W, et al. mRNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17(4): 261-279. |
[14] | WANG Y, ZHANG Z Q, LUO J W, et al. mRNA vaccine: a potential therapeutic strategy[J]. Mol Cancer, 2021, 20(1): 33. |
[15] |
STEINER P A, CORTE D D, GEIJO J, et al. Highly variable mRNA half-life time within marine bacterial taxa and functional genes[J]. Environ Microbiol, 2019, 21(10): 3873-3884.
doi: 10.1111/1462-2920.14737 pmid: 31298776 |
[16] | YEAPURI P, OLSON K E, LU Y M, et al. Development of an extended half-life GM-CSF fusion protein for Parkinson’s disease[J]. J Control Release, 2022, 348: 951-965. |
[17] | YAN Y, LIU X Y, LU A, et al. Non-viral vectors for RNA delivery[J]. J Control Release, 2022, 342: 241-279. |
[18] | CHU Y Y, ZHANG Y, WANG Q K, et al. A transformer-based model to predict peptide-HLA class Ⅰ binding and optimize mutated peptides for vaccine design[J]. Nat Mach Intell, 2022, 4: 300-311. |
[19] | BELL M R, KUTZLER M A. An old problem with new solutions: strategies to improve vaccine efficacy in the elderly[J]. Adv Drug Deliv Rev, 2022, 183: 114175. |
[20] | XU S Q, YANG K P, LI R, et al. mRNA vaccine era-mechanisms, drug platform and clinical prospection[J]. Int J Mol Sci, 2020, 21(18): 6582. |
[21] |
CHEN G, ZHAO B W, RUIZ E F, et al. Advances in the polymeric delivery of nucleic acid vaccines[J]. Theranostics, 2022, 12(9): 4081-4109.
doi: 10.7150/thno.70853 pmid: 35673570 |
[22] | WEBER J S, CARLINO M S, KHATTAK A, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study[J]. Lancet, 2024, 403(10427): 632-644. |
[23] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
[24] | ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150. |
[25] | LIANG X P, LI D P, LENG S L, et al. RNA-based pharmacotherapy for tumors: from bench to clinic and back[J]. Biomedecine Pharmacother, 2020, 125: 109997. |
[26] | MITCHELL W. The 1986 Nobel Prize in chemistry[J]. Science, 1986, 234(4777): 673-674. |
[27] |
SCHMITT W E, STASSAR M J, SCHMITT W, et al. In vitro induction of a bladder cancer-specific T-cell response by mRNA-transfected dendritic cells[J]. J Cancer Res Clin Oncol, 2001, 127(3): 203-206.
pmid: 11260867 |
[28] |
MA S J, LI X L, MAI Y P, et al. Immunotherapeutic treatment of lung cancer and bone metastasis with a mPLA/mRNA tumor vaccine[J]. Acta Biomater, 2023, 169: 489-499.
doi: 10.1016/j.actbio.2023.07.059 pmid: 37536492 |
[29] | BERNARD M C, BAZIN E, PETIOT N, et al. The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanoparticle delivery system[J]. Mol Ther Nucleic Acids, 2023, 32: 794-806. |
[30] | MEULEWAETER S, ZHANG Y, WADHWA A, et al. Considerations on the design of lipid-based mRNA vaccines against cancer[J]. J Mol Biol, 2024, 436(2): 168385. |
[31] | YAN Y F, LIU X M, WANG L Y, et al. Branched hydrophobic tails in lipid nanoparticles enhance mRNA delivery for cancer immunotherapy[J]. Biomaterials, 2023, 301: 122279. |
[32] | SUN B, WU W X, NARASIPURA E A, et al. Engineering nanoparticle toolkits for mRNA delivery[J]. Adv Drug Deliv Rev, 2023, 200: 115042. |
[33] | QU Y, XU J, ZHANG T, et al. Advanced nano-based strategies for mRNA tumor vaccine[J]. Acta Pharm Sin B, 2024, 14(1): 170-189. |
[34] | ESTAPÉ SENTI M, GARCÍA DEL VALLE L, SCHIFFELERS R M. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond[J]. Adv Drug Deliv Rev, 2024, 206: 115190. |
[35] | DIMITRIADIS G J. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes[J]. Nature, 1978, 274(5674): 923-924. |
[36] |
CHEN Z, MENG C Y, MAI J H, et al. An mRNA vaccine elicits STING-dependent antitumor immune responses[J]. Acta Pharm Sin B, 2023, 13(3): 1274-1286.
doi: 10.1016/j.apsb.2022.11.013 pmid: 36970194 |
[37] | SHARMA P, HOORN D, AITHA A, et al. The immunostimulatory nature of mRNA lipid nanoparticles[J]. Adv Drug Deliv Rev, 2024, 205: 115175. |
[38] |
PARMAR M B, K C R B, LÖBENBERG R, et al. Additive polyplexes to undertake siRNA therapy against CDC20 and survivin in breast cancer cells[J]. Biomacromolecules, 2018, 19(11): 4193-4206.
doi: 10.1021/acs.biomac.8b00918 pmid: 30222931 |
[39] | PERCHE F, BENVEGNU T, BERCHEL M, et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA[J]. Nanomed-Nanotechnol Biol Med, 2011, 7(4): 445-453. |
[40] | ARYA S, LIN Q B, ZHOU N, et al. Strong immune responses induced by direct local injections of modified mRNA-lipid nano complexes[J]. Mol Ther Nucleic Acids, 2020, 19: 1098-1109. |
[41] |
YANG A F, BAI Y, DONG X, et al. Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy[J]. Acta Biomater, 2021, 133: 257-267.
doi: 10.1016/j.actbio.2021.08.014 pmid: 34407475 |
[42] | SHI S X, YANG K, HONG H, et al. VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide invivo[J]. Biomaterials, 2015, 39: 39-46. |
[43] | MALLA R, SRILATHA M, FARRAN B, et al. mRNA vaccines and their delivery strategies: a journey from infectious diseases to cancer[J]. Mol Ther, 2024, 32(1): 13-31. |
[44] |
CHARBE N B, AMNERKAR N D, RAMESH B, et al. Small interfering RNA for cancer treatment: overcoming hurdles in delivery[J]. Acta Pharm Sin B, 2020, 10(11): 2075-2109.
doi: 10.1016/j.apsb.2020.10.005 pmid: 33304780 |
[45] | YIHUNIE W, NIBRET G, ASCHALE Y. Recent advances in messenger ribonucleic acid (mRNA) vaccines and their delivery systems: a review[J]. Clin Pharmacol, 2023, 15: 77-98. |
[46] | DEMIR-DORA D, ÖNER F. Development and evaluation of polyethylenimine polyplexes as non-viral vectors for delivery of plasmid DNA encoding shRNA against STAT3 activity into triple negative breast cancer cells[J]. J Drug Deliv Sci Technol, 2023, 82: 104113. |
[47] | WANG K L, WANG X Y, JIANG D, et al. Delivery of mRNA vaccines and anti-PDL1 siRNA through non-invasive transcutaneous route effectively inhibits tumor growth[J]. Compos Part B Eng, 2022, 233: 109648. |
[48] | ZHANG Z H, QIAN Y, JIN H L, et al. Peptide-lipid nano-delivery system for cancer theranostics[J]. Nanomed Nanotechnol Biol Med, 2018, 14(5): 1867. |
[49] | KORDALIVAND N, TONDINI E, LAU C Y J, et al. Cationic synthetic long peptides-loaded nanogels: an efficient therapeutic vaccine formulation for induction of T-cell responses[J]. J Control Release, 2019, 315: 114-125. |
[50] | LOU B, KOKER S D, LAU C Y J, et al. mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells[J]. Bioconjug Chem, 2019, 30(2): 461-475. |
[51] | MAI Y P, GUO J S, ZHAO Y, et al. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity[J]. Cell Immunol, 2020, 354: 104143. |
[52] | LIN H X, ZHOU R H, YU T J, et al. An acid-targeting peptide can be used as a carrier for photodynamic therapy (PDT)[J]. Mater Today Commun, 2022, 31: 103659. |
[53] | CHEN S, LI J G, MA X Y, et al. Cationic peptide-modified gold nanostars as efficient delivery platform for RNA interference antitumor therapy[J]. Polymers, 2021, 13(21): 3764. |
[54] | SUNG J, ALGHOUL Z, LONG D P, et al. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: a novel therapeutic solution to treat ulcerative colitis[J]. Biomaterials, 2022, 288: 121707. |
[55] | KITAGAWA K, TATSUMI M, KATO M, et al. An oral cancer vaccine using a Bifidobacterium vector suppresses tumor growth in a syngeneic mouse bladder cancer model[J]. Mol Ther Oncolytics, 2021, 22: 592-603. |
[56] |
UCHIDA S, KINOH H, ISHII T, et al. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety[J]. Biomaterials, 2016, 82: 221-228.
doi: 10.1016/j.biomaterials.2015.12.031 pmid: 26763736 |
[57] |
CHENG C, CONVERTINE A J, STAYTON P S, et al. Multifunctional triblock copolymers for intracellular messenger RNA delivery[J]. Biomaterials, 2012, 33(28): 6868-6876.
doi: 10.1016/j.biomaterials.2012.06.020 pmid: 22784603 |
[58] | LIU Y H, LI S H, LIN S Y, et al. A tetrahedral framework nucleic acid based multifunctional nanocapsule for tumor prophylactic mRNA vaccination[J]. Chin Chemical Lett, 2023, 34(7): 107987. |
[59] | YAO R H, XIE C Y, XIA X J. Recent progress in mRNA cancer vaccines[J]. Hum Vaccin Immunother, 2024, 20(1): 2307187. |
[60] | HE Q, GAO H, TAN D J, et al. mRNA cancer vaccines: advances, trends and challenges[J]. Acta Pharm Sin B, 2022, 12(7): 2969-2989. |
[61] | CHUNG D J, SHARMA S, RANGESA M, et al. Langerhans dendritic cell vaccine bearing mRNA-encoded tumor antigens induces antimyeloma immunity after auto-transplant[J]. Blood Adv, 2022, 6(5): 1547-1558. |
[62] | FIGDOR C G, De VRIES I J, LESTERHUIS W J, et al. Dendritic cell immunotherapy: mapping the way[J]. Nat Med, 10(5): 475-80. |
[63] | LESTERHUIS W J, AARNTZEN E H, DE VRIES I J, et al. Dendritic cell vaccines in melanoma: from promise to proof?[J]. Crit Rev Oncol Hematol, 2008, 66(2): 118-134. |
[64] |
De VRIES I J, BERNSEN M R, LESTERHUIS W J, et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome[J]. J Clin Oncol, 2005, 23(24): 5779-5787.
doi: 10.1200/JCO.2005.06.478 pmid: 16110035 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd