China Oncology ›› 2025, Vol. 35 ›› Issue (2): 143-153.doi: 10.19401/j.cnki.1007-3639.2025.02.001
• Specialist's Commentary • Previous Articles Next Articles
LU Yufeng(), WANG Han, XIE Yifan, JIANG Yizhou, SHAO Zhimin(
)
Received:
2024-12-30
Revised:
2025-01-24
Online:
2025-02-28
Published:
2025-03-19
Supported by:
Share article
CLC Number:
LU Yufeng, WANG Han, XIE Yifan, JIANG Yizhou, SHAO Zhimin. Significant fundamental translational research on breast cancer in China: progress and prospects[J]. China Oncology, 2025, 35(2): 143-153.
Tab. 1
Representative fundamental translational research on breast cancer in the past five years in China"
Subtype | Year | Critical identifications | Journal |
---|---|---|---|
HR+/HER2- breast cancer | 2022 | Overexpression of cyclin D1 and CDK4 contributes to resistance to CDK4/6 inhibitors and can be overcome by PI3K/mTOR inhibitors | Sci China Life Sci[ |
2023 | Established a large-scale multi-omics cohort and identified four molecular subtypes of HR+/HER2- breast cancer | Nat Genet[ | |
2024 | lncRNA EILA binds cyclin E1 to prevent its degradation, promoting CDK4/6i resistance and emerging as a therapeutic target to overcome resistance | Sci Adv[ | |
TNBC | 2019 | Comprehensively analyzed clinical, genomic, and transcriptomic data of a cohort of 465 primary TNBC and identified four molecular subtypes of HR+/HER2- breast cancer | Cancer Cell[ |
2020 | Enhancing immunogenic chemotherapy by inhibiting B7-H4 glycosylation combined with PD-L1 blockade improves immune infiltration and tumor growth control in cold tumors | Cancer Discov[ | |
2021 | Elevated baseline CXCL13+ T cells, associated with macrophage inflammation, predict responses to combined therapy, and their paclitaxel-induced reduction may impair outcomes when atezolizumab is used for TNBC treatment | Cancer Cell[ | |
2022 | TAMs engage with TNBC cells through the IL-6-TGF-β1 axis, activating HLF to increase iron death resistance via GGT1, thus propelling tumor progression and offering a therapeutic target for TNBC | J Hematol Oncol[ | |
2023 | The study uncovered TNBC ferroptosis heterogeneity, with GPX4 inhibitors enhancing anti-tumor immunity in LAR subtypes and showing high efficacy when combined with anti-PD-1 therapy | Cell Metab[ | |
2024 | LINC00115 acts as a scaffolding lncRNA to enhance chemoresistant breast cancer stem cell properties through SETDB1 and PLK3 interactions. A combination therapy strategy targeting LINC00115 and SETDB1 is expected to overcome chemoresistance in TNBC | Mol Cancer[ | |
HER2+ breast cancer | 2020 | Upregulated NCAPG reduced the sensitivity of HER2-positive breast cancer cells to trastuzumab through activation of the SRC/STAT3 signaling pathway. NCAPG could be a potential therapeutic target to overcome trastuzumab resistance | Cell Death Dis[ |
2022 | CircCDYL2 is a potential biomarker of trastuzumab resistance in HER2-positive breast cancer patients by stabilizing GRB7 and enhancing its interaction with FAK to maintain AKT and ERK1/2 activity | Mol Cancer[ | |
2023 | PDPN+ CAFs promote resistance to trastuzumab in HER2+ breast cancer patients by secreting IDO1 and TDO2, which inhibit NK cell-mediated ADCC effects. Targeting PDPN+CAFs increases sensitivity to trastuzumab in HER2+ breast cancer | Drug Resist Updat[ | |
2024 | The molecular characteristics and clinical features of the subtypes were further explored across multiple cohorts, and the feasibility of the proposed treatment strategies was validated in patient-derived organoid and patient-derived tumor fragment models | Cancer Res[ | |
Trastuzumab-resistant tumors show increased NAT8L and NAA, evading immunity through CNS-like anti-inflammatory mechanisms, making NAT8L a potential target to boost immunotherapy efficacy in HER2+ breast cancer | Cancer Cell[ |
[1] | HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. |
[2] | PEROU C M, SØRLIE T, EISEN M B, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-752. |
[3] | HUPPERT L A, GUMUSAY O, IDOSSA D, et al. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer[J]. CA Cancer J Clin, 2023, 73(5): 480-515. |
[4] |
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187.
doi: 10.19401/j.cnki.1007-3639.2023.12.004 |
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-Cancer Association (2024 edition)[J]. Chin Oncol, 2023, 33(12): 1092-1187.
doi: 10.19401/j.cnki.1007-3639.2023.12.004 |
|
[5] | GIAQUINTO A N, SUNG H, MILLER K D, et al. Breast cancer statistics, 2022[J]. CA A Cancer J Clinicians, 2022, 72(6): 524-541. |
[6] | FOULKES W D, SMITH I E, REIS-FILHO J S. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363(20): 1938-1948. |
[7] |
YIN L, DUAN J J, BIAN X W, et al. Triple-negative breast cancer molecular subtyping and treatment progress[J]. Breast Cancer Res, 2020, 22(1): 61.
doi: 10.1186/s13058-020-01296-5 pmid: 32517735 |
[8] | HAN Y Q, WANG J Y, SUN T, et al. Predictive biomarkers of response and survival following immunotherapy with a PD-L1 inhibitor benmelstobart (TQB2450) and antiangiogenic therapy with a VEGFR inhibitor anlotinib for pretreated advanced triple negative breast cancer[J]. Signal Transduct Target Ther, 2023, 8: 429. |
[9] |
CHEN X, MA C N, LI Y M, et al. COL5A1 promotes triple-negative breast cancer progression by activating tumor cell-macrophage crosstalk[J]. Oncogene, 2024, 43: 1742-1756.
doi: 10.1038/s41388-024-03030-3 pmid: 38609499 |
[10] | XU G F, HUANG R, WUMAIER R, et al. Proteomic profiling of serum extracellular vesicles identifies diagnostic signatures and therapeutic targets in breast cancer[J]. Cancer Res, 2024, 84(19): 3267-3285. |
[11] | JIANG Y Z, MA D, JIN X, et al. Integrated multiomic profiling of breast cancer in the Chinese population reveals patient stratification and therapeutic vulnerabilities[J]. Nat Cancer, 2024, 5: 673-690. |
[12] | PAN H C, GRAY R, BRAYBROOKE J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years[J]. N Engl J Med, 2017, 377(19): 1836-1846. |
[13] | ZHANG K M, ZHAO D C, LI Z Y, et al. Inactivated cGAS-STING signaling facilitates endocrine resistance by forming a positive feedback loop with AKT kinase in ER+HER2-breast cancer[J]. Adv Sci, 2024, 11(35): 2403592. |
[14] | LI K, SHU D, LI H, et al. SMAD4 depletion contributes to endocrine resistance by integrating ER and ERBB signaling in HR+HER2- breast cancer[J]. Cell Death Dis, 2024, 15(6): 444. |
[15] | CHEN X, DING J C, HU G S, et al. Estrogen-induced LncRNA, LINC02568, promotes estrogen receptor-positive breast cancer development and drug resistance through both in trans and in cis mechanisms[J]. Adv Sci (Weinh), 2023, 10(25): e2206663. |
[16] |
SPRING L M, WANDER S A, ANDRE F, et al. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future[J]. Lancet, 2020, 395(10226): 817-827.
doi: S0140-6736(20)30165-3 pmid: 32145796 |
[17] |
QUAN C T, WU Z J, XIONG J, et al. Upregulated PARP1 confers breast cancer resistance to CDK4/6 inhibitors via YB-1 phosphorylation[J]. Exp Hematol Oncol, 2023, 12(1): 100.
doi: 10.1186/s40164-023-00462-7 pmid: 38037159 |
[18] | CAI Z J, SHI Q F, LI Y D, et al. LncRNA EILA promotes CDK4/6 inhibitor resistance in breast cancer by stabilizing cyclin E1 protein[J]. Sci Adv, 2023, 9(40): eadi3821. |
[19] | SWAIN S M, SHASTRY M, HAMILTON E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-126. |
[20] | LI Y H, HUANG M, WANG M E, et al. Tumor cells impair immunological synapse formation via central nervous system-enriched metabolite[J]. Cancer Cell, 2024, 42(6): 985-1002.e18. |
[21] |
XING F, GAO H L, CHEN G L, et al. CMTM6 overexpression confers trastuzumab resistance in HER2-positive breast cancer[J]. Mol Cancer, 2023, 22(1): 6.
doi: 10.1186/s12943-023-01716-y pmid: 36627608 |
[22] | DUAN N J, HUA Y J, YAN X Q, et al. Unveiling alterations of epigenetic modifications and chromatin architecture leading to lipid metabolic reprogramming during the evolutionary trastuzumab adaptation of HER2-positive breast cancer[J]. Adv Sci (Weinh), 2024, 11(18): e2309424. |
[23] |
YATES L R, KNAPPSKOG S, WEDGE D, et al. Genomic evolution of breast cancer metastasis and relapse[J]. Cancer Cell, 2017, 32(2): 169-184.e7.
doi: S1535-6108(17)30297-0 pmid: 28810143 |
[24] |
SCHLAM I, SWAIN S M. HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now[J]. NPJ Breast Cancer, 2021, 7(1): 56.
doi: 10.1038/s41523-021-00265-1 pmid: 34016991 |
[25] | ZHANG H Y, ZHANG L L, HE Y N, et al. PI3K PROTAC overcomes the lapatinib resistance in PIK3CA-mutant HER2 positive breast cancer[J]. Cancer Lett, 2024, 598: 217112. |
[26] | GUO L W, LI X G, YANG Y S, et al. Large-scale genomic sequencing reveals adaptive opportunity of targeting mutated-PI3Kα in early and advanced HER2-positive breast cancer[J]. Clin Transl Med, 2021, 11(11): e589. |
[27] | WANG J N, XU B H. Targeted therapeutic options and future perspectives for HER2-positive breast cancer[J]. Signal Transduct Target Ther, 2019, 4: 34. |
[28] | LIU X X, ZHANG X, SHAO Z Y, et al. Pyrotinib and chrysin synergistically potentiate autophagy in HER2-positive breast cancer[J]. Signal Transduct Target Ther, 2023, 8: 463. |
[29] |
ZHU X Z, CHEN L, HUANG B H, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 122.
doi: 10.1186/s13046-021-01930-w pmid: 33832512 |
[30] |
DERAKHSHAN F, REIS-FILHO J S. Pathogenesis of triple-negative breast cancer[J]. Annu Rev Pathol, 2022, 17: 181-204.
doi: 10.1146/annurev-pathol-042420-093238 pmid: 35073169 |
[31] |
YAO L T, HAO Q, WANG M Z, et al. KLHL29-mediated DDX3X degradation promotes chemosensitivity by abrogating cell cycle checkpoint in triple-negative breast cancer[J]. Oncogene, 2023, 42: 3514-3528.
doi: 10.1038/s41388-023-02858-5 pmid: 37845393 |
[32] | DIECI M V, GUARNERI V, TOSI A, et al. Neoadjuvant chemotherapy and immunotherapy in luminal B-like breast cancer: results of the phase Ⅱ GIADA trial[J]. Clin Cancer Res, 2022, 28(2): 308-317. |
[33] | CAI Y W, LIU C C, ZHANG Y W, et al. MAP3K1 mutations confer tumor immune heterogeneity in hormone receptor-positive HER2-negative breast cancer[J]. J Clin Invest, 2024, 135(2): e183656. |
[34] |
LI X C, CHEN G D, WANG F C, et al. Oncogenic PIK3CA recruits myeloid-derived suppressor cells to shape the immunosuppressive tumour microenvironment in luminal breast cancer through the 5-lipoxygenase-dependent arachidonic acid pathway[J]. Clin Transl Med, 2023, 13(11): e1483.
doi: 10.1002/ctm2.1483 pmid: 37965796 |
[35] |
ADAMS S, GATTI-MAYS M E, KALINSKY K, et al. Current landscape of immunotherapy in breast cancer: a review[J]. JAMA Oncol, 2019, 5(8): 1205-1214.
doi: 10.1001/jamaoncol.2018.7147 |
[36] | YU B, LUO F, SUN B W, et al. KAT6A acetylation of SMAD3 regulates myeloid-derived suppressor cell recruitment, metastasis, and immunotherapy in triple-negative breast cancer[J]. Adv Sci (Weinh), 2021, 8(20): e2100014. |
[37] |
WANG H, RONG X Y, ZHAO G, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594.e8.
doi: 10.1016/j.cmet.2022.02.010 pmid: 35278352 |
[38] | XIA J, ZHANG L X, PENG X, et al. IL1R2 blockade alleviates immunosuppression and potentiates anti-pd-1 efficacy in triple-negative breast cancer[J]. Cancer Res, 2024, 84(14): 2282-2296. |
[39] |
VITALE I, SHEMA E, LOI S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy[J]. Nat Med, 2021, 27(2): 212-224.
doi: 10.1038/s41591-021-01233-9 pmid: 33574607 |
[40] | GE L P, JIN X, MA D, et al. ZNF689 deficiency promotes intratumor heterogeneity and immunotherapy resistance in triple-negative breast cancer[J]. Cell Res, 2024, 34(1): 58-75. |
[41] | JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3): 428-440.e5. |
[42] |
JIN X, ZHOU Y F, MA D, et al. Molecular classification of hormone receptor-positive HER2-negative breast cancer[J]. Nat Genet, 2023, 55: 1696-1708.
doi: 10.1038/s41588-023-01507-7 pmid: 37770634 |
[43] | LI Y W, DAI L J, WU X R, et al. Molecular characterization and classification of HER2-positive breast cancer inform tailored therapeutic strategies[J]. Cancer Res, 2024, 84(21): 3669-3683. |
[44] |
XIAO Y, MA D, YANG Y S, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer[J]. Cell Res, 2022, 32(5): 477-490.
doi: 10.1038/s41422-022-00614-0 pmid: 35105939 |
[45] |
GONG Y, JI P, YANG Y S, et al. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets[J]. Cell Metab, 2021, 33(1): 51-64.e9.
doi: 10.1016/j.cmet.2020.10.012 pmid: 33181091 |
[46] | YANG F, XIAO Y, DING J H, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J]. Cell Metab, 2023, 35(1): 84-100.e8. |
[47] | SU G H, XIAO Y, YOU C, et al. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets[J]. Sci Adv, 2023, 9(40): eadf0837. |
[48] | DING J H, XIAO Y, YANG F, et al. Guanosine diphosphate-mannose suppresses homologous recombination repair and potentiates antitumor immunity in triple-negative breast cancer[J]. Sci Transl Med, 2024, 16(728): eadg7740. |
[49] |
MEHTA S, ZHANG J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer[J]. Nat Rev Cancer, 2022, 22(4): 239-252.
doi: 10.1038/s41568-022-00444-7 pmid: 35149762 |
[50] | LU B, QIU R, WEI J T, et al. Phase separation of phospho-HDAC6 drives aberrant chromatin architecture in triple-negative breast cancer[J]. Nat Cancer, 2024, 5: 1622-1640. |
[51] |
SUN Y J, SUN Y Y, YUE S C, et al. Histone deacetylase inhibitors in cancer therapy[J]. Curr Top Med Chem, 2018, 18(28): 2420-2428.
doi: 10.2174/1568026619666181210152115 pmid: 30526462 |
[52] | HU Z L, WEI F, SU Y, et al. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression[J]. Signal Transduct Target Ther, 2023, 8(1): 11. |
[53] | LIU J Z, ZHAI M, CHEN Y Y, et al. Acetylation-dependent deubiquitinase USP26 stabilizes BAG3 to promote breast cancer progression[J]. Cancer Lett, 2024, 597: 217005. |
[54] | PETROWSKY H, FRITSCH R, GUCKENBERGER M, et al. Modern therapeutic approaches for the treatment of malignant liver tumours[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(12): 755-772. |
[55] | TANG X Y, MAO X R, LING P W, et al. Glycolysis inhibition induces anti-tumor central memory CD8+T cell differentiation upon combination with microwave ablation therapy[J]. Nat Commun, 2024, 15: 4665. |
[56] | LIU C C, CHEN L, CAI Y W, et al. Targeting EMSY-mediated methionine metabolism is a potential therapeutic strategy for triple-negative breast cancer[J]. Cell Rep Med, 2024, 5(2): 101396. |
[57] |
LIU D, LU Q, WANG X, et al. LSECtin on tumor-associated macrophages enhances breast cancer stemness via interaction with its receptor BTN3A3[J]. Cell Res, 2019, 29(5): 365-378.
doi: 10.1038/s41422-019-0155-6 pmid: 30858559 |
[58] | ZHENG G X, GUO Z Y, LI W M, et al. Interaction between HLA-G and NK cell receptor KIR2DL4 orchestrates HER2-positive breast cancer resistance to trastuzumab[J]. Signal Transduct Target Ther, 2021, 6(1): 236. |
[59] | DU R X, ZHANG X M, LU X Y, et al. PDPN positive CAFs contribute to HER2 positive breast cancer resistance to trastuzumab by inhibiting antibody-dependent NK cell-mediated cytotoxicity[J]. Drug Resist Updat, 2023, 68: 100947. |
[60] | LIU X W, LU Y W, HUANG J Y, et al. CD16+ fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition[J]. Cancer Cell, 2022, 40(11): 1341-1357.e13. |
[61] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clin, 2021, 71(1): 7-33. |
[62] |
BAI H R, LIU X Q, LIN M Z, et al. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer[J]. Nat Commun, 2024, 15: 5154.
doi: 10.1038/s41467-024-49106-2 pmid: 38886378 |
[63] | ZHU Y X, JIA H R, GAO G, et al. Mitochondria-acting nanomicelles for destruction of cancer cells via excessive mitophagy/autophagy-driven lethal energy depletion and phototherapy[J]. Biomaterials, 2020, 232: 119668. |
[64] | GUO Y, CUI Y Q, LI Y Y, et al. Cytoplasmic YAP1-mediated ESCRT-Ⅲ assembly promotes autophagic cell death and is ubiquitinated by NEDD4L in breast cancer[J]. Cancer Commun (Lond), 2023, 43(5): 582-612. |
[65] |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[66] | DING Y H, CHEN X P, LIU C, et al. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells[J]. J Hematol Oncol, 2021, 14(1): 19. |
[67] |
OUYANG B S, SHAN C H, SHEN S, et al. AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer[J]. Nat Commun, 2024, 15(1): 7560.
doi: 10.1038/s41467-024-51980-9 pmid: 39215014 |
[68] |
ZHAO S, CHEN D P, FU T, et al. Single-cell morphological and topological atlas reveals the ecosystem diversity of human breast cancer[J]. Nat Commun, 2023, 14(1): 6796.
doi: 10.1038/s41467-023-42504-y pmid: 37880211 |
[69] | ZHANG S W, YANG B, YANG H P, et al. Potential rapid intraoperative cancer diagnosis using dynamic full-field optical coherence tomography and deep learning: a prospective cohort study in breast cancer patients[J]. Sci Bull (Beijing), 2024, 69(11): 1748-1756. |
[70] | ZHAO L, CHANG F, TONG Y, et al. A multifunctional bimetallic nanoplatform for synergic local hyperthermia and chemotherapy targeting HER2-positive breast cancer[J]. Adv Sci (Weinh), 2024, 11(16): e2308316. |
[71] |
LI K, LIN C C, LI M H, et al. Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy[J]. ACS Nano, 2022, 16(2): 2381-2398.
doi: 10.1021/acsnano.1c08664 pmid: 35041395 |
[72] | JI X Y, GUO D X, MA J, et al. Epigenetic remodeling hydrogel patches for multidrug-resistant triple-negative breast cancer[J]. Adv Mater, 2021, 33(18): e2100949. |
[73] | HUANG D, ZHU X F, YE S Y, et al. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides[J]. Nature, 2024, 625: 593-602. |
[74] | CAI Z J, WANG J R, LI Y D, et al. Overexpressed Cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors[J]. Sci China Life Sci, 2023, 66(1): 94-109. |
[75] |
SONG X X, ZHOU Z, LI H C, et al. Pharmacologic suppression of B7-H4 glycosylation restores antitumor immunity in immune-cold breast cancers[J]. Cancer Discov, 2020, 10(12): 1872-1893.
doi: 10.1158/2159-8290.CD-20-0402 pmid: 32938586 |
[76] |
ZHANG Y, CHEN H, MO H, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer[J]. Cancer Cell, 2021, 39(12): 1578-1593.e8.
doi: 10.1016/j.ccell.2021.09.010 pmid: 34653365 |
[77] | LI H Y, YANG P H, WANG J H, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk[J]. J Hematol Oncol, 2022, 15(1): 2. |
[78] |
LUO F, ZHANG M D, SUN B W, et al. LINC00115 promotes chemoresistant breast cancer stem-like cell stemness and metastasis through SETDB1/PLK3/HIF1α signaling[J]. Mol Cancer, 2024, 23(1): 60.
doi: 10.1186/s12943-024-01975-3 pmid: 38520019 |
[79] |
JIANG L L, REN L L, CHEN H, et al. NCAPG confers trastuzumab resistance via activating SRC/STAT3 signaling pathway in HER2-positive breast cancer[J]. Cell Death Dis, 2020, 11(7): 547.
doi: 10.1038/s41419-020-02753-x pmid: 32683421 |
[80] | LING Y, LIANG G H, LIN Q, et al. circCDYL2 promotes trastuzumab resistance via sustaining HER2 downstream signaling in breast cancer[J]. Mol Cancer, 2022, 21(1): 8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd