中国癌症杂志 ›› 2023, Vol. 33 ›› Issue (3): 293-302.doi: 10.19401/j.cnki.1007-3639.2023.03.014
• 综述 • 上一篇
芦瑜1(), 席雨梦1, 何晓明1, 杨少坤1, 张佳2, 王雷3, 何朝星1(
), 向柏1(
)
收稿日期:
2022-05-13
修回日期:
2022-08-05
出版日期:
2023-03-30
发布日期:
2023-04-17
通信作者:
何朝星(ORCID: 0000-0001-8019-0622),硕士,高级实验师;向柏(ORCID: 0000-0002-4789-641X),博士,教授,河北医科大学药学院药剂学教研室主任。
作者简介:
芦瑜(ORCID: 0000-0002-0200-7973),硕士在读。
基金资助:
LU Yu1(), XI Yumeng1, HE Xiaoming1, YANG Shaokun1, ZHANG Jia2, WANG Lei3, HE Chaoxing1(
), XIANG Bai1(
)
Received:
2022-05-13
Revised:
2022-08-05
Published:
2023-03-30
Online:
2023-04-17
Contact:
HE Chaoxing, XIANG Bai
文章分享
摘要:
类器官作为一种良好的体外研究模型,在生物医学领域中的应用越来越广泛。通过采用各种组织培养技术开发自组装的3D结构,类器官可重现器官固有结构中细胞的高度复杂性,因此被广泛用于研究调节机体发育和疾病的机制、高通量药物筛选及个性化治疗等。为更好地重现微环境内细胞间的相互作用,共培养策略已经扩展到更多的细胞类型,共培养策略的迅速发展使类器官技术的应用前景更加广阔,并为治疗人类疾病和再生医学开辟了新的道路。本文阐述共培养策略在类器官生成中的作用,并重点介绍不同细胞成分及微生物组与类器官共培养的应用,以期为构建开发具有更高体内模拟程度的类器官提供参考和帮助。
中图分类号:
芦瑜, 席雨梦, 何晓明, 杨少坤, 张佳, 王雷, 何朝星, 向柏. 共培养策略在类器官研究中的应用进展[J]. 中国癌症杂志, 2023, 33(3): 293-302.
LU Yu, XI Yumeng, HE Xiaoming, YANG Shaokun, ZHANG Jia, WANG Lei, HE Chaoxing, XIANG Bai. Advances in the application of co-culture strategies in organoids[J]. China Oncology, 2023, 33(3): 293-302.
表1
免疫细胞和类器官共培养的实例"
Organoid type | Components used | Platform and matrix | Type of disease | Main outcomes | Treatment method | Reference |
---|---|---|---|---|---|---|
Human-derived autologous organoid | DC and the patient’s CD8+ T cells | Cell-basement membrane matrix | Gastric cancer | Predicting PD-L1 treatment efficacy and patient prognosis in cancer | Immune checkpoint | [ |
Murine and human PDAC autologous organoid | CTL/MDSC | Matrigel | PC | The efficacy of combination therapy and targeted therapy was tested | PD-1 inhibition and MDSC depletion | [ |
Primary organoids derived from surgical specimens | T lymphocytes | Matrigel | CRC | CEA-TCB’s performance against three-dimensional tumor organoids | CEA-CD3 T cell bispecific antibody | [ |
Patient-derived organoid | T cell | Matrigel | Melanoma | Testing the migration and cytotoxic effector function of expanded γδT cells in patient- derived melanoma organoid | Adoptive immunotherapy | [ |
An early-stage human brain organoid | Embryonal CNS tumors and Zika virus | Matrigel | CNS | Analysis of the oncolytic role of Zika virus as an oncolytic virus | Oncolytic virus | [ |
Autologous tumor organoid | Human PBMC-derived DC | BME 2 | BC | The tumor suppressor and immune-activating effects of HELA-Exos were explored in patient-derived organoids | Cancer vaccine | [ |
Human epithelial colon organoid lines derived from rectal biopsy samples | Cryopreserved primary human CD4+ T cells | Transwell | IBD | Determining the mechanism by which IL-22 regulates intestinal epithelial cell function | — | [ |
The epithelial layer from fetal ISC | Fetal CD4+ Tem cells | Matrigel | NEC | TNF-α-producing CD4+ T cells promote mucosal development in the fetal gut but also mediate inflammation during preterm birth | — | [ |
Murine small intestine organoids | ILC1 | Matrigel | Inflammation | ILC1 may exacerbate fibrosis and tumor growth when enriched in inflamed patient tissue | — | [ |
PDO | PBMC | Matrigel | GC | Dexamethasone can increase the sensitivity of ICI in coculture system | Immune checkpoint | [ |
Autologous tumor organoids | Autologous peripheral blood lymphocytes | Geltrex | CRC or NSCLC | This enables the establishment of ex vivo test systems for T-cell-based immunotherapy at the level of the individual patient | — | [ |
Tissue-derived human gastric organoids | MoDC | Microfluidics and V-ORG-3 | — | Studying DC-epithelial cell interactions in the human stomach | — | [ |
Murine intestinal tumor organoids | IEL | Matrigel | — | Abundant IEL in the small intestine may help reduce the number of tumors | — | [ |
表2
成纤维细胞和类器官的共培养示例"
Organoid type | Components used | Platform and matrix | Main outcomes | Detection technology | Reference |
---|---|---|---|---|---|
CRC PDO | CRC-derived CAF | Matrigel | Some oncogenic signal cascades induced by cell-cell interaction between organoids and CAF were mediated by the signal pathways related to immune responses | DNA microarray; NCC oncopanel | [ |
CRC PDO | CAF | Hyaluronan-gelatin hydrogel | Co-culture of CRC PDO with CAF resulted in enhanced PDO growth and drug resistance | RNA- and whole-exome sequencing; Immunostaining and immunohistochemistry; Viability staining | [ |
Primary liver tumor-derived organoids | CAF | Transwell | CAF promoted tumor organoid growth via paracrine signaling. Vice versa, cancer cells secrete paracrine factors regulating CAF physiology | Quantitative real-time reverse-transcription PCR; Immunohistochemistry and immunofluorescence | [ |
OSCC PDO | Primary CAF | Matrigel | Notch activity contributes to biogenesis of OSCC-associated fibroblasts | Bright phase and fluorescence imaging; Immunohistochemical analysis | [ |
Human iPSC-derived HLOs (LUAD) | Human fetal fibroblast | Matrigel | HLOs that overexpressed HER2 transformed to tumor-like structures similar to atypical adenomatous hyperplasia | RNA sequence analysis; Immunocytochemistry; Immunohistochemistry; EdU assay; Real-time-quantitative reverse-transcription PCR | [ |
Generate organoids from PC-9 cells | Podoplanin (+) CAF | StemPro human embryonic stem cell serum-free medium | Growth-promoting effect of podoplanin (+) CAF in cancer cells | Immunofluorescence; Immunohistochemical | [ |
CRC PDO | CRC-derived CAF | GelMA | Acoustic 3D bioprinting technology can be widely used for establishing various microtissues for modeling cancer invasion and other diseases | Immunofluorescence staining; Staining of tissue sections | [ |
PDAC PDO | Human CAF | Matrigel | CAF maintain the differentiated PDAC phenotype through secreting niche factors and induce distinct drug responses | Immunohistochemistry and immunofluorescent staining; Transcriptome analysis; RNA extraction and quantitative reverse-transcription PCR | [ |
Organoid models of breast cancer cell lines | CD36+ fibroblasts | Matrigel | Fibroblasts inhibit organoid growth and normalizes basal and lateral polarities | Brightfield or immunofluorescent microscopy and robust image analysis | [ |
PDAC tumor organoids | CAF | Transwell; Matrigel | CAF confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor | Immunofluorescence staining | [ |
Primary CRC organoids derived from surgical specimens | T cells and autologous CAF | Matrigel | Testing the costimulatory effect of a fibroblast activating protein (FAP)-targeted 4-1BBL bispecific antibody fusion protein currently in clinical trials | Confocal videomicroscopy | [ |
LNCaP or PC3 organoids | Prostate cancer-derived CAF | Matrigel | Targeting AR/FlnA complexes by stitching peptides provides a potential new strategy for PC therapy | PCR; IP; Co-IP; Rac pull-down assay and Western blot | [ |
[1] |
PRIOR N, INACIO P, HUCH M. Liver organoids: from basic research to therapeutic applications[J]. Gut, 2019, 68(12): 2228-2237.
doi: 10.1136/gutjnl-2019-319256 pmid: 31300517 |
[2] |
LAU H C H, KRANENBURG O, XIAO H P, et al. Organoid models of gastrointestinal cancers in basic and translational research[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 203-222.
doi: 10.1038/s41575-019-0255-2 pmid: 32099092 |
[3] |
Models for immuno-oncology research[J]. Cancer Cell, 2020, 38(2): 145-147.
doi: S1535-6108(20)30371-8 pmid: 32781038 |
[4] |
SMOLAR J, HORST M, SALEMI S, et al. Predifferentiated smooth muscle-like adipose-derived stem cells for bladder engineering[J]. Tissue Eng Part A, 2020, 26(17/18): 979-992.
doi: 10.1089/ten.tea.2019.0216 |
[5] |
YUKI K, CHENG N, NAKANO M, et al. Organoid models of tumor immunology[J]. Trends Immunol, 2020, 41(8): 652-664.
doi: S1471-4906(20)30134-4 pmid: 32654925 |
[6] |
HOFER M, LUTOLF M P. Engineering organoids[J]. Nat Rev Mater, 2021, 6(5): 402-420.
doi: 10.1038/s41578-021-00279-y |
[7] |
SAHIN U. Studying tumor-reactive T cells: a personalized organoid model[J]. Cell Stem Cell, 2018, 23(3): 318-319.
doi: S1934-5909(18)30400-4 pmid: 30193129 |
[8] | CHAKRABARTI J, KOH V, SO J, et al. A preclinical human-derived autologous gastric cancer organoid/immune cell co-culture model to predict the efficacy of targeted therapies[J]. J Vis Exp, 2021, (173). |
[9] |
HOLOKAI L, CHAKRABARTI J, LUNDY J, et al. Murine- and human-derived autologous organoid/immune cell co-cultures as pre-clinical models of pancreatic ductal adenocarcinoma[J]. Cancers, 2020, 12(12): 3816.
doi: 10.3390/cancers12123816 |
[10] |
CHAKRABARTI J, HOLOKAI L, SYU L, et al. Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer[J]. Oncotarget, 2018, 9(100): 37439-37457.
doi: 10.18632/oncotarget.26473 pmid: 30647844 |
[11] |
TEIJEIRA A, MIGUELIZ I, GARASA S, et al. Three-dimensional colon cancer organoids model the response to CEA-CD3 T-cell engagers[J]. Theranostics, 2022, 12(3): 1373-1387.
doi: 10.7150/thno.63359 pmid: 35154495 |
[12] | OU L L, WANG H S, LIU Q, et al. Dichotomous and stable gamma delta T-cell number and function in healthy individuals[J]. J Immunother Cancer, 2021, 9(5): e002274. |
[13] |
FERREIRA R O, GRANHA I, FERREIRA R S, et al. Effect of serial systemic and intratumoral injections of oncolytic ZIKV BR in mice bearing embryonal CNS tumors[J]. Viruses, 2021, 13(10): 2103.
doi: 10.3390/v13102103 |
[14] |
HUANG L X, RONG Y, TANG X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer[J]. Mol Cancer, 2022, 21(1): 45.
doi: 10.1186/s12943-022-01515-x pmid: 35148751 |
[15] |
WHELAN K A, MUIR A B, NAKAGAWA H. Esophageal 3D culture systems as modeling tools in esophageal epithelial pathobiology and personalized medicine[J]. Cell Mol Gastroenterol Hepatol, 2018, 5(4): 461-478.
doi: 10.1016/j.jcmgh.2018.01.011 pmid: 29713660 |
[16] | PATNAUDE L, MAYO M, MARIO R, et al. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair[J]. Life Sci, 2021, 271: 119195. |
[17] |
SCHREURS R R C E, BAUMDICK M E, SAGEBIEL A F, et al. Human fetal TNF-α-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life[J]. Immunity, 2019, 50(2): 462-476.e8.
doi: 10.1016/j.immuni.2018.12.010 |
[18] |
GRETEN F R, GRIVENNIKOV S I. Inflammation and cancer: triggers, mechanisms, and consequences[J]. Immunity, 2019, 51(1): 27-41.
doi: S1074-7613(19)30295-X pmid: 31315034 |
[19] |
JOWETT G M, NORMAN M D A, YU T T L, et al. ILC1 drive intestinal epithelial and matrix remodelling[J]. Nat Mater, 2021, 20(2): 250-259.
doi: 10.1038/s41563-020-0783-8 |
[20] |
YE W R, LUO C, LI C L, et al. Organoids to study immune functions, immunological diseases and immunotherapy[J]. Cancer Lett, 2020, 477: 31-40.
doi: S0304-3835(20)30096-3 pmid: 32112908 |
[21] |
XIANG Z, ZHOU Z J, SONG S Z, et al. Dexamethasone suppresses immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways[J]. Oncogene, 2021, 40(31): 5002-5012.
doi: 10.1038/s41388-021-01897-0 pmid: 34175886 |
[22] |
CATTANEO C M, DIJKSTRA K K, FANCHI L F, et al. Tumor organoid-T-cell coculture systems[J]. Nat Protoc, 2020, 15(1): 15-39.
doi: 10.1038/s41596-019-0232-9 pmid: 31853056 |
[23] |
BAR-EPHRAIM Y E, KRETZSCHMAR K, CLEVERS H. Organoids in immunological research[J]. Nat Rev Immunol, 2020, 20(5): 279-293.
doi: 10.1038/s41577-019-0248-y |
[24] | CHERNE M D, SIDAR B, SEBRELL T A, et al. A synthetic hydrogel, VitroGel® ORGANOID-3, improves immune cell-epithelial interactions in a tissue chip co-culture model of human gastric organoids and dendritic cells[J]. Front Pharmacol, 2021, 12: 707891. |
[25] |
MORIKAWA R, NEMOTO Y, YONEMOTO Y, et al. Intraepithelial lymphocytes suppress intestinal tumor growth by cell-to-cell contact via CD103/E-cadherin signal[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(5): 1483-1503.
doi: 10.1016/j.jcmgh.2021.01.014 pmid: 33515805 |
[26] |
DAVIDSON S, COLES M, THOMAS T, et al. Fibroblasts as immune regulators in infection, inflammation and cancer[J]. Nat Rev Immunol, 2021, 21(11): 704-717.
doi: 10.1038/s41577-021-00540-z pmid: 33911232 |
[27] |
SAHAI E, ASTSATUROV I, CUKIERMAN E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186.
doi: 10.1038/s41568-019-0238-1 pmid: 31980749 |
[28] |
SAINI H, NIKKHAH M. Fabrication method of a high-density co-culture tumor-stroma platform to study cancer progression[J]. Methods Mol Biol, 2021, 2258: 241-255.
doi: 10.1007/978-1-0716-1174-6_16 pmid: 33340365 |
[29] |
JANG I, BENINGO K A. Integrins, CAFs and mechanical forces in the progression of cancer[J]. Cancers, 2019, 11(5): 721.
doi: 10.3390/cancers11050721 |
[30] |
NARUSE M, OCHIAI M, SEKINE S, et al. Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs[J]. Sci Rep, 2021, 11(1): 2077.
doi: 10.1038/s41598-021-81475-2 pmid: 33483567 |
[31] |
LUO X B, FONG E L S, ZHU C J, et al. Hydrogel-based colorectal cancer organoid co-culture models[J]. Acta Biomater, 2021, 132: 461-472.
doi: 10.1016/j.actbio.2020.12.037 pmid: 33388439 |
[32] |
LIU J Y, LI P F, WANG L, et al. Cancer-associated fibroblasts provide a stromal niche for liver cancer organoids that confers trophic effects and therapy resistance[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(2): 407-431.
doi: 10.1016/j.jcmgh.2020.09.003 pmid: 32932015 |
[33] |
DAWSON J C, SERRELS A, STUPACK D G, et al. Targeting FAK in anticancer combination therapies[J]. Nat Rev Cancer, 2021, 21(5): 313-324.
doi: 10.1038/s41568-021-00340-6 pmid: 33731845 |
[34] | CHEN X, LI R, ZHAO H, et al. Phenotype transition of fibroblasts incorporated into patient-derived oral carcinoma organoids[J]. Oral Dis, 2021: 2021Nov5. |
[35] |
MIURA A, YAMADA D, NAKAMURA M, et al. Oncogenic potential of human pluripotent stem cell-derived lung organoids with HER2 overexpression[J]. Int J Cancer, 2021, 149(8): 1593-1604.
doi: 10.1002/ijc.33713 pmid: 34152598 |
[36] |
CHEN H, DU L, LI J, et al. Modeling cancer metastasis using acoustically bio-printed patient-derived 3D tumor microtissues[J]. J Mater Chem B, 2022, 10(11): 1843-1852.
doi: 10.1039/D1TB02789A |
[37] |
SHINKAWA T, OHUCHIDA K, MOCHIDA Y, et al. Subtypes in pancreatic ductal adenocarcinoma based on niche factor dependency show distinct drug treatment responses[J]. J Exp Clin Cancer Res, 2022, 41(1): 89.
doi: 10.1186/s13046-022-02301-9 |
[38] |
CHENG Q S, JABBARI K, WINKELMAIER G, et al. Overexpression of CD36 in mammary fibroblasts suppresses colony growth in breast cancer cell lines[J]. Biochem Biophys Res Commun, 2020, 526(1): 41-47.
doi: 10.1016/j.bbrc.2020.03.061 |
[39] |
FIORINI E, VEGHINI L, CORBO V. Modeling cell communication in cancer with organoids: making the complex simple[J]. Front Cell Dev Biol, 2020, 8: 166.
doi: 10.3389/fcell.2020.00166 pmid: 32258040 |
[40] |
FELDMANN K, MAURER C, PESCHKE K, et al. Mesenchymal plasticity regulated by Prrx1 drives aggressive pancreatic cancer biology[J]. Gastroenterology, 2021, 160(1): 346-361.e24.
doi: 10.1053/j.gastro.2020.09.010 pmid: 33007300 |
[41] |
CHEN X M, SONG E W. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115.
doi: 10.1038/s41573-018-0004-1 pmid: 30470818 |
[42] |
DI DONATO M, ZAMAGNI A, GALASSO G, et al. The androgen receptor/filamin A complex as a target in prostate cancer microenvironment[J]. Cell Death Dis, 2021, 12(1): 127.
doi: 10.1038/s41419-021-03402-7 pmid: 33500395 |
[43] |
NAKAMURA H, SUGANO M, MIYASHITA T, et al. Organoid culture containing cancer cells and stromal cells reveals that podoplanin-positive cancer-associated fibroblasts enhance proliferation of lung cancer cells[J]. Lung Cancer, 2019, 134: 100-107.
doi: S0169-5002(19)30394-0 pmid: 31319967 |
[44] | JORGENSEN M, RAMESH P, TORO M, et al. Alginate hydrogel microtubes for salivary gland cell organization and cavitation[J]. Bioengineering (Basel), 2022, 9(1): 38. |
[45] |
YANG H, FENG R, FU Q, et al. Human induced pluripotent stem cell-derived mesenchymal stem cells promote healing via TNF-α-stimulated gene-6 in inflammatory bowel disease models[J]. Cell Death Dis, 2019, 10(10): 718.
doi: 10.1038/s41419-019-1957-7 pmid: 31558705 |
[46] | MOUSSA L, LAPIÈRE A, SQUIBAN C, et al. BMP antagonists secreted by mesenchymal stromal cells improve colonic organoid formation: application for the treatment of radiation-induced injury[J]. Cell Transplant, 2020, 29: 963689720929683. |
[47] |
CORDERO-ESPINOZA L, DOWBAJ A M, KOHLER T N, et al. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation[J]. Cell Stem Cell, 2021, 28(11): 1907-1921.e8.
doi: 10.1016/j.stem.2021.07.002 |
[48] |
TANAKA C, FURIHATA K, NAGANUMA S, et al. Establishment of a mouse model of pancreatic cancer using human pancreatic cancer cell line S2-013-derived organoid[J]. Hum Cell, 2022, 35(2): 735-744.
doi: 10.1007/s13577-022-00684-7 pmid: 35150409 |
[49] | ADELSON R P, PALIKUQI B, WEISS Z, et al. Morphological characterization of Etv2 vascular explants using fractal analysis and atomic force microscopy[J]. Microvasc Res, 2021, 138: 104205. |
[50] |
PALIKUQI B, NGUYEN D H T, LI G, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis[J]. Nature, 2020, 585(7825): 426-432.
doi: 10.1038/s41586-020-2712-z |
[51] |
SALMON I, GREBENYUK S, ABDEL FATTAH A R, et al. Engineering neurovascular organoids with 3D printed microfluidic chips[J]. Lab Chip, 2022, 22(8): 1615-1629.
doi: 10.1039/D1LC00535A |
[52] |
AHN Y, AN J H, YANG H J, et al. Human blood vessel organoids penetrate human cerebral organoids and form a vessel-like system[J]. Cells, 2021, 10(8): 2036.
doi: 10.3390/cells10082036 |
[53] | PRADHAN S, WEISS A A. Probiotic properties of escherichia coli nissle in human intestinal organoids[J]. mBio, 2020, 11(4): e01470-e01420. |
[54] |
PUSCHHOF J, PLEGUEZUELOS-MANZANO C, CLEVERS H. Organoids and organs-on-chips: Insights into human gut-microbe interactions[J]. Cell Host Microbe, 2021, 29(6): 867-878.
doi: 10.1016/j.chom.2021.04.002 pmid: 34111395 |
[55] |
NAKAMOTO N, SASAKI N, AOKI R, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis[J]. Nat Microbiol, 2019, 4(3): 492-503.
doi: 10.1038/s41564-018-0333-1 pmid: 30643240 |
[56] | NATARAJAN V, SIMONEAU C R, ERICKSON A L, et al. Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system[J]. Open Biol, 2022, 12(3): 210320. |
[57] |
LEE D, KIM Y, CHUNG C. Scientific validation and clinical application of lung cancer organoids[J]. Cells, 2021, 10(11): 3012.
doi: 10.3390/cells10113012 |
[58] |
HAN Y L, DUAN X H, YANG L L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J]. Nature, 2021, 589(7841): 270-275.
doi: 10.1038/s41586-020-2901-9 |
[59] |
HUANG J, HUME A J, ABO K M, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response[J]. Cell Stem Cell, 2020, 27(6): 962-973.e7.
doi: 10.1016/j.stem.2020.09.013 pmid: 32979316 |
[60] |
SHEK D, CHEN D S, READ S A, et al. Examining the gut-liver axis in liver cancer using organoid models[J]. Cancer Lett, 2021, 510: 48-58.
doi: 10.1016/j.canlet.2021.04.008 pmid: 33891996 |
[61] | HOLOKAI L, CHAKRABARTI J, BRODA T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to helicobacter pylori infection[J]. PLoS Pathog, 2019, 15(1): e1007468. |
[62] |
SAYED I M, SAHAN A Z, VENKOVA T, et al. Helicobacter pylori infection downregulates the DNA glycosylase NEIL2, resulting in increased genome damage and inflammation in gastric epithelial cells[J]. J Biol Chem, 2020, 295(32): 11082-11098.
doi: 10.1074/jbc.RA119.009981 pmid: 32518160 |
[63] | XU R, ZHOU X T, WANG S K, et al. Tumor organoid models in precision medicine and investigating cancer-stromal interactions[J]. Pharmacol Ther, 2021, 218: 107668. |
[1] | 王梓霏, 丁雅卉, 李彦, 栾鑫, 汤忞. 生物3D打印在肿瘤研究及组织工程中的应用[J]. 中国癌症杂志, 2024, 34(9): 814-826. |
[2] | 肖毅, 吴名, 姚刚. 肿瘤类器官研究现状与展望[J]. 中国癌症杂志, 2024, 34(8): 763-776. |
[3] | 王蔓莉, 陈辉, 段智, 许奇美, 李贞. 普列克底物蛋白2/miR-196a信号轴介导肿瘤微环境中肺癌细胞的通讯机制研究[J]. 中国癌症杂志, 2024, 34(7): 628-638. |
[4] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[5] | 王小聪, 李明. 单细胞测序在口腔鳞状细胞癌研究中的价值[J]. 中国癌症杂志, 2024, 34(5): 501-508. |
[6] | 林艺聪, 王悦, 薛倩倩, 郑强, 金燕, 黄子凌, 李媛. EGFR T790M突变非小细胞肺癌患者的临床病理学、免疫微环境特征及对预后预测的意义[J]. 中国癌症杂志, 2024, 34(4): 368-379. |
[7] | 吴洪基, 王海霞, 汪玲, 罗小刚, 邹冬玲. 人工智能在类器官研究中的应用进展与挑战[J]. 中国癌症杂志, 2024, 34(2): 210-219. |
[8] | 蒋媛媛, 魏文斐, 吴靖雅, 黎华文. 类器官在妇科恶性肿瘤药物筛选中的应用[J]. 中国癌症杂志, 2024, 34(11): 1053-1060. |
[9] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[10] | 李欣然, 梁依依, 屠红. 肿瘤内微生物组的研究进展[J]. 中国癌症杂志, 2023, 33(9): 866-873. |
[11] | 张少秋, 燕丽, 李瑞辰, 赵阳, 王孝深, 杨旭光, 朱奕. 头颈部鳞状细胞癌免疫微环境及其作用机制的最新研究进展及展望[J]. 中国癌症杂志, 2023, 33(6): 629-636. |
[12] | 杨闻箫, 国琳玮, 凌泓, 胡欣. 基于免疫微环境特征的曲妥珠单抗与免疫治疗联合应用预测模型[J]. 中国癌症杂志, 2023, 33(5): 484-498. |
[13] | 杨文博, 张斌, 吴佳慧, 崔洁. 去势抵抗性前列腺癌免疫微环境的研究现状与治疗方向[J]. 中国癌症杂志, 2023, 33(10): 945-953. |
[14] | 薛影, 毛蕴玉, 徐建青. 用于实体瘤治疗的缺氧敏感型CAR-T细胞的研究进展[J]. 中国癌症杂志, 2023, 33(1): 71-77. |
[15] | 崔灵珺, 田超, 程梓轩, 郑佳彬, 苏菲, 谭煌英. 胃肠胰神经内分泌肿瘤临床前模型的研究进展[J]. 中国癌症杂志, 2022, 32(9): 779-785. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn