中国癌症杂志 ›› 2024, Vol. 34 ›› Issue (1): 1-12.doi: 10.19401/j.cnki.1007-3639.2024.01.001
收稿日期:
2023-12-25
修回日期:
2024-01-03
出版日期:
2024-01-30
发布日期:
2024-02-05
通信作者:
虞先濬(ORCID: 0000-0002-6697-7143),博士,主任医师,复旦大学附属肿瘤医院院长。
作者简介:
李天骄(ORCID: 0000-0001-5429-1016),博士,住院医师。基金资助:
LI Tianjiao(), YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun(
)
Received:
2023-12-25
Revised:
2024-01-03
Published:
2024-01-30
Online:
2024-02-05
Contact:
YU Xianjun.
文章分享
摘要:
胰腺癌是恶性程度极高的消化系统肿瘤,其症状隐匿、治疗手段有限、进展迅速。随着胰腺癌的发病率逐年上升,胰腺癌越来越成为危害公共健康的突出问题,造成了巨大的社会负担。尽管胰腺癌患者的生存率在最近20余年并无明显改善,但目前在胰腺癌领域中,流行病学、基础和临床研究明显加速,有些研究成果已使一小部分胰腺癌患者取得更好的生存获益。本文就2023年度胰腺癌研究及诊疗的重大进展进行综述。
中图分类号:
李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12.
LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023[J]. China Oncology, 2024, 34(1): 1-12.
[1] |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73(1): 17-48.
doi: 10.3322/caac.v73.1 |
[2] |
WANG Y A, YAN Q J, FAN C M, et al. Overview and countermeasures of cancer burden in China[J]. Sci China Life Sci, 2023, 66(11): 2515-2526.
doi: 10.1007/s11427-022-2240-6 |
[3] |
JU W, ZHENG R, ZHANG S, et al. Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea[J]. Sci China Life Sci, 2023, 66(5): 1079-1091.
doi: 10.1007/s11427-022-2218-x |
[4] | HE S Y, XIA C F, LI H, et al. Cancer profiles in China and comparisons with the USA: a comprehensive analysis in the incidence, mortality, survival, staging, and attribution to risk factors[J]. Sci China Life Sci, 2023: 1-10. |
[5] |
HALBROOK C J, LYSSIOTIS C A, PASCA DI MAGLIANO M, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754.
doi: 10.1016/j.cell.2023.02.014 pmid: 37059070 |
[6] |
CARPENTER E S, ELHOSSINY A M, KADIYALA P, et al. Analysis of donor pancreata defines the transcriptomic signature and microenvironment of early neoplastic lesions[J]. Cancer Discov, 2023, 13(6): 1324-1345.
doi: 10.1158/2159-8290.CD-23-0013 |
[7] |
ZHAO Y, TANG J, JIANG K, et al. Liquid biopsy in pancreatic cancer-current perspective and future outlook[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188868.
doi: 10.1016/j.bbcan.2023.188868 |
[8] |
GAO Q, LIN Y P, LI B S, et al. Unintrusive multi-cancer detection by circulating cell-free DNA methylation sequencing (THUNDER): development and independent validation studies[J]. Ann Oncol, 2023, 34(5): 486-495.
doi: 10.1016/j.annonc.2023.02.010 |
[9] |
HAAN D, BERGAMASCHI A, FRIEDL V, et al. Epigenomic blood-based early detection of pancreatic cancer employing cell-free DNA[J]. Clin Gastroenterol Hepatol, 2023, 21(7): 1802-1809.e6.
doi: 10.1016/j.cgh.2023.03.016 |
[10] |
CHEN P T, WU T H, WANG P C, et al. Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study[J]. Radiology, 2023, 306(1): 172-182.
doi: 10.1148/radiol.220152 |
[11] |
LI X Y, GUO R, LU J, et al. Causality-driven graph neural network for early diagnosis of pancreatic cancer in non-contrast computerized tomography[J]. IEEE Trans Med Imaging, 2023, 42(6): 1656-1667.
doi: 10.1109/TMI.2023.3236162 |
[12] |
KORFIATIS P, SUMAN G, PATNAM N G, et al. Automated artificial intelligence model trained on a large data set can detect pancreas cancer on diagnostic computed tomography scans as well as visually occult preinvasive cancer on prediagnostic computed tomography scans[J]. Gastroenterology, 2023, 165(6): 1533-1546.e4.
doi: 10.1053/j.gastro.2023.08.034 |
[13] |
STOFFEL E M, BRAND R E, GOGGINS M. Pancreatic cancer: changing epidemiology and new approaches to risk assessment, early detection, and prevention[J]. Gastroenterology, 2023, 164(5): 752-765.
doi: 10.1053/j.gastro.2023.02.012 |
[14] |
PARTYKA O, PAJEWSKA M, KWAŚNIEWSKA D, et al. Overview of pancreatic cancer epidemiology in Europe and recommendations for screening in high-risk populations[J]. Cancers (Basel), 2023, 15(14): 3634.
doi: 10.3390/cancers15143634 |
[15] |
PLACIDO D, YUAN B, HJALTELIN J X, et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories[J]. Nat Med, 2023, 29(5): 1113-1122.
doi: 10.1038/s41591-023-02332-5 pmid: 37156936 |
[16] |
RAUT P, NIMMAKAYALA R K, BATRA S K, et al. Clinical and molecular attributes and evaluation of pancreatic cystic neoplasm[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(1): 188851.
doi: 10.1016/j.bbcan.2022.188851 |
[17] |
POLLINI T, WONG P, MAKER A V. The landmark series: intraductal papillary mucinous neoplasms of the pancreas-from prevalence to early cancer detection[J]. Ann Surg Oncol, 2023, 30(3): 1453-1462.
doi: 10.1245/s10434-022-12870-w pmid: 36600097 |
[18] |
NIKIFOROVA M N, WALD A I, SPAGNOLO D M, et al. A combined DNA/RNA-based next-generation sequencing platform to improve the classification of pancreatic cysts and early detection of pancreatic cancer arising from pancreatic cysts[J]. Ann Surg, 2023, 278(4): e789-e797.
doi: 10.1097/SLA.0000000000005904 pmid: 37212422 |
[19] |
TANAKA M, FERNÁNDEZ-DEL CASTILLO C, KAMISAWA T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas[J]. Pancreatology, 2017, 17(5): 738-753.
doi: S1424-3903(17)30516-1 pmid: 28735806 |
[20] |
VEGE S S, ZIRING B, JAIN R, et al. American Gastroenterological Association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts[J]. Gastroenterology, 2015, 148(4): 819-822; quize12-13.
doi: 10.1053/j.gastro.2015.01.015 pmid: 25805375 |
[21] |
ZHANG X F, MAO T B, ZHANG B, et al. Characterization of the genomic landscape in large-scale Chinese patients with pancreatic cancer[J]. EBioMedicine, 2022, 77: 103897.
doi: 10.1016/j.ebiom.2022.103897 |
[22] |
STRICKLER J H, SATAKE H, GEORGE T J, et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer[J]. N Engl J Med, 2023, 388(1): 33-43.
doi: 10.1056/NEJMoa2208470 |
[23] |
HALLIN J, BOWCUT V, CALINISAN A, et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS G12D inhibitor[J]. Nat Med, 2022, 28(10): 2171-2182.
doi: 10.1038/s41591-022-02007-7 |
[24] |
MAHADEVAN K K, MCANDREWS K M, LEBLEU V S, et al. KRAS G12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells[J]. Cancer Cell, 2023, 41(9): 1606-1620.e8.
doi: 10.1016/j.ccell.2023.07.002 |
[25] |
KEMP S B, CHENG N, MARKOSYAN N, et al. Efficacy of a small-molecule inhibitor of Kras G12D in immunocompetent models of pancreatic cancer[J]. Cancer Discov, 2023, 13(2): 298-311.
doi: 10.1158/2159-8290.CD-22-1066 |
[26] |
SINGH H, KELLER R B, KAPNER K S, et al. Oncogenic drivers and therapeutic vulnerabilities in KRAS wild-type pancreatic cancer[J]. Clin Cancer Res, 2023, 29(22): 4627-4643.
doi: 10.1158/1078-0432.CCR-22-3930 |
[27] | GOODWIN C M, WATERS A M, KLOMP J E, et al. Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer[J]. Cancer Res, 2023, 83(1): 141-157. |
[28] |
STOSSEL C, RAITSES-GUREVICH M, ATIAS D, et al. Spectrum of response to platinum and PARP inhibitors in germline BRCA-associated pancreatic cancer in the clinical and preclinical setting[J]. Cancer Discov, 2023, 13(8): 1826-1843.
doi: 10.1158/2159-8290.CD-22-0412 |
[29] |
PATTERSON-FORTIN J, JADHAV H, PANTELIDOU C, et al. Polymerase θ inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in models of BRCA-deficient cancer[J]. Nat Commun, 2023, 14(1): 1390.
doi: 10.1038/s41467-023-37096-6 |
[30] |
MANDELKER D, MARRA A, ZHENG-LIN B B, et al. Genomic profiling reveals germline predisposition and homologous recombination deficiency in pancreatic acinar cell carcinoma[J]. J Clin Oncol, 2023, 41(33): 5151-5162.
doi: 10.1200/JCO.23.00561 |
[31] |
YE L, SHI S, CHEN W. Innate immunity in pancreatic cancer: lineage tracing and function[J]. Front Immunol, 2022, 13: 1081919.
doi: 10.3389/fimmu.2022.1081919 |
[32] |
LV G, ZHANG L, GAO L, et al. The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment[J]. Br J Cancer, 2023, 128(2): 206-218.
doi: 10.1038/s41416-022-02023-x |
[33] |
CHEN Y J, LI G N, LI X J, et al. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy[J]. Sci Adv, 2023, 9(17): eadg0654.
doi: 10.1126/sciadv.adg0654 |
[34] |
ZUO C, BAER J M, KNOLHOFF B L, et al. Stromal and therapy-induced macrophage proliferation promotes PDAC progression and susceptibility to innate immunotherapy[J]. J Exp Med, 2023, 220(6): e20212062.
doi: 10.1084/jem.20212062 |
[35] |
ALONSO-NOCELO M, RUIZ-CAÑAS L, SANCHO P, et al. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma[J]. Gut, 2023, 72(2): 345-359.
doi: 10.1136/gutjnl-2021-325564 |
[36] |
CARONNI N, LA TERZA F, VITTORIA F M, et al. IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer[J]. Nature, 2023, 623(7986): 415-422.
doi: 10.1038/s41586-023-06685-2 |
[37] |
LIU X, TANG R, XU J, et al. CRIP1 fosters MDSC trafficking and resets tumour microenvironment via facilitating NF-κB/p65 nuclear translocation in pancreatic ductal adenocarcinoma[J]. Gut, 2023, 72(12): 2329-2343.
doi: 10.1136/gutjnl-2022-329349 |
[38] |
WANG L W, LIU Y H, DAI Y T, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment[J]. Gut, 2023, 72(5): 958-971.
doi: 10.1136/gutjnl-2021-326070 |
[39] |
BIANCHI A N, DE CASTRO SILVA I, DESHPANDE N U, et al. Cell-autonomous Cxcl1 sustains tolerogenic circuitries and stromal inflammation via neutrophil-derived TNF in pancreatic cancer[J]. Cancer Discov, 2023, 13(6): 1428-1453.
doi: 10.1158/2159-8290.CD-22-1046 pmid: 36946782 |
[40] |
TINTELNOT J, XU Y, LESKER T R, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer[J]. Nature, 2023, 615(7950): 168-174.
doi: 10.1038/s41586-023-05728-y |
[41] |
ZOU X, GUAN C, GAO J, et al. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy[J]. Front Immunol, 2023, 14: 1222719.
doi: 10.3389/fimmu.2023.1222719 |
[42] |
KINKER G S, VITIELLO G A F, DINIZ A B, et al. Mature tertiary lymphoid structures are key niches of tumour-specific immune responses in pancreatic ductal adenocarcinomas[J]. Gut, 2023, 72(10): 1927-1941.
doi: 10.1136/gutjnl-2022-328697 |
[43] |
ZOU X, LIN X, CHENG H, et al. Characterization of intratumoral tertiary lymphoid structures in pancreatic ductal adenocarcinoma: cellular properties and prognostic significance[J]. J Immunother Cancer, 2023, 11(6): e006698.
doi: 10.1136/jitc-2023-006698 |
[44] |
LIU X, HOGG G D, ZUO C, et al. Context-dependent activation of STING-interferon signaling by CD11b agonists enhances anti-tumor immunity[J]. Cancer Cell, 2023, 41(6): 1073-1090.e12.
doi: 10.1016/j.ccell.2023.04.018 pmid: 37236195 |
[45] |
HE F, TAY A H M, CALANDIGARY A, et al. FPR2 shapes an immune-excluded pancreatic tumor microenvironment and drives T-cell exhaustion in a sex-dependent manner[J]. Cancer Res, 2023, 83(10): 1628-1645.
doi: 10.1158/0008-5472.CAN-22-2932 pmid: 36919330 |
[46] |
ROHILA D, PARK I H, PHAM T V, et al. Syk inhibition reprograms tumor-associated macrophages and overcomes gemcitabine-induced immunosuppression in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2023, 83(16): 2675-2689.
doi: 10.1158/0008-5472.CAN-22-3645 pmid: 37306759 |
[47] |
LEE Y E, GO G Y, KOH E Y, et al. Synergistic therapeutic combination with a CAF inhibitor enhances CAR-NK-mediated cytotoxicity via reduction of CAF-released IL-6[J]. J Immunother Cancer, 2023, 11(2): e006130.
doi: 10.1136/jitc-2022-006130 |
[48] |
WANG X D, SU S Y, ZHU Y Q, et al. Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors[J]. Nat Commun, 2023, 14(1): 5778.
doi: 10.1038/s41467-023-41470-9 pmid: 37723178 |
[49] |
FU S N, XU S K, ZHANG S B. The role of amino acid metabolism alterations in pancreatic cancer: from mechanism to application[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188893.
doi: 10.1016/j.bbcan.2023.188893 |
[50] |
REBELO A, KLEEFF J, SUNAMI Y. Cholesterol metabolism in pancreatic cancer[J]. Cancers (Basel), 2023, 15(21): 5177.
doi: 10.3390/cancers15215177 |
[51] |
PARK S J, YOO H C, AHN E, et al. Enhanced glutaminolysis drives hypoxia-induced chemoresistance in pancreatic cancer[J]. Cancer Res, 2023, 83(5): 735-752.
doi: 10.1158/0008-5472.CAN-22-2045 pmid: 36594876 |
[52] |
NWOSU Z C, WARD M H, SAJJAKULNUKIT P, et al. Uridine-derived ribose fuels glucose-restricted pancreatic cancer[J]. Nature, 2023, 618(7963): 151-158.
doi: 10.1038/s41586-023-06073-w |
[53] |
CHEN M, CEN K L, SONG Y J, et al. NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2023, 567: 216285.
doi: 10.1016/j.canlet.2023.216285 |
[54] |
BARTMAN C R, WEILANDT D R, SHEN Y H, et al. Slow TCA flux and ATP production in primary solid tumours but not metastases[J]. Nature, 2023, 614(7947): 349-357.
doi: 10.1038/s41586-022-05661-6 |
[55] |
SCHUURMANS M, ALVES N, VENDITTELLI P, et al. Artificial intelligence in pancreatic ductal adenocarcinoma imaging: a commentary on potential future applications[J]. Gastroenterology, 2023, 165(2): 309-316.
doi: 10.1053/j.gastro.2023.04.003 |
[56] |
BIAN Y, ZHENG Z, FANG X, et al. Artificial intelligence to predict lymph node metastasis at CT in pancreatic ductal adenocarcinoma[J]. Radiology, 2023, 306(1): 160-169.
doi: 10.1148/radiol.220329 |
[57] |
ZHANG C Y, XU J, TANG R, et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment[J]. J Hematol Oncol, 2023, 16(1): 114.
doi: 10.1186/s13045-023-01514-5 |
[58] |
CORTI C, COBANAJ M, DEE E C, et al. Artificial intelligence in cancer research and precision medicine: applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care[J]. Cancer Treat Rev, 2023, 112: 102498.
doi: 10.1016/j.ctrv.2022.102498 |
[59] | LIN Q, ZHENG S Y, YU X J, et al. Standard pancreatoduodenectomy versus extended pancreatoduodenectomy with modified retroperitoneal nerve resection in patients with pancreatic head cancer: a multicenter randomized controlled trial[J]. Cancer Commun (Lond), 2023, 43(2): 257-275. |
[60] |
FARNELL M B, PEARSON R K, SARR M G, et al. A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma[J]. Surgery, 2005, 138(4): 618-628; discussion 628-630.
doi: 10.1016/j.surg.2005.06.044 |
[61] |
NIMURA Y, NAGINO M, TAKAO S, et al. Standard versus extended lymphadenectomy in radical pancreatoduodenectomy for ductal adenocarcinoma of the head of the pancreas: Long-term results of a Japanese multicenter randomized controlled trial[J]. J Hepatobiliary Pancreat Sci, 2012, 19(3): 230-241.
doi: 10.1007/s00534-011-0466-6 pmid: 22038501 |
[62] |
JANG J Y, KANG M J, HEO J S, et al. A prospective randomized controlled study comparing outcomes of standard resection and extended resection, including dissection of the nerve plexus and various lymph nodes, in patients with pancreatic head cancer[J]. Ann Surg, 2014, 259(4): 656-664.
doi: 10.1097/SLA.0000000000000384 |
[63] | WANG W, LOU W, XU Z, et al. Long-term outcomes of standard versus extended lymphadenectomy in pancreatoduodenectomy for pancreatic ductal adenocarcinoma: a Chinese multi-center prospective randomized controlled trial[J]. J Adv Res, 2023, 49: 151-157. |
[64] |
MEIERHOFER C, FUEGGER R, BIEBL M, et al. Pancreatic fistulas: current evidence and strategy-a narrative review[J]. J Clin Med, 2023, 12(15): 5046.
doi: 10.3390/jcm12155046 |
[65] |
GIULIANI T, PERRI G, KANG R, et al. Current perioperative care in pancreatoduodenectomy: a step-by-step surgical roadmap from first visit to discharge[J]. Cancers (Basel), 2023, 15(9): 2499.
doi: 10.3390/cancers15092499 |
[66] |
VAN DEN BROEK B L J, ZWART M J W, BONSING B A, et al. Video grading of pancreatic anastomoses during robotic pancreatoduodenectomy to assess both learning curve and the risk of pancreatic fistula[J]. Ann Surg, 2023, 278(5): e1048-e1054.
doi: 10.1097/SLA.0000000000005796 |
[67] |
SCHOUTEN T J, HENRY A C, SMITS F J, et al. Risk models for developing pancreatic fistula after pancreatoduodenectomy: validation in a nationwide prospective cohort[J]. Ann Surg, 2023, 278(6): 1001-1008.
doi: 10.1097/SLA.0000000000005824 |
[68] |
SCHUH F, MIHALJEVIC A L, PROBST P, et al. A simple classification of pancreatic duct size and texture predicts postoperative pancreatic fistula: a classification of the international study group of pancreatic surgery[J]. Ann Surg, 2023, 277(3): e597-e608.
doi: 10.1097/SLA.0000000000004855 |
[69] |
STOOP T F, BERGQUIST E, THEIJSE R T, et al. Systematic review and meta-analysis of the role of total pancreatectomy as an alternative to pancreatoduodenectomy in patients at high risk for postoperative pancreatic fistula: is it a justifiable indication?[J]. Ann Surg, 2023, 278(4): e702-e711.
doi: 10.1097/SLA.0000000000005895 pmid: 37161977 |
[70] |
ELLIS R J, BRAJCICH B C, BERTENS K A, et al. Association between biliary pathogens, surgical site infection, and pancreatic fistula: results of a randomized trial of perioperative antibiotic prophylaxis in patients undergoing pancreatoduodenectomy[J]. Ann Surg, 2023, 278(3): 310-319.
doi: 10.1097/SLA.0000000000005955 pmid: 37314221 |
[71] |
SPRINGFELD C, FERRONE C R, KATZ M H G, et al. Neoadjuvant therapy for pancreatic cancer[J]. Nat Rev Clin Oncol, 2023, 20(5): 318-337.
doi: 10.1038/s41571-023-00746-1 pmid: 36932224 |
[72] |
VERSTEIJNE E, VAN DAM J L, SUKER M, et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the Dutch randomized PREOPANC trial[J]. J Clin Oncol, 2022, 40(11): 1220-1230.
doi: 10.1200/JCO.21.02233 |
[73] |
MOTOI F, KOSUGE T, UENO H, et al. Randomized phase Ⅱ/Ⅲ trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05)[J]. Jpn J Clin Oncol, 2019, 49(2): 190-194.
doi: 10.1093/jjco/hyy190 |
[74] |
YAMAGUCHI J, YOKOYAMA Y, FUJII T, et al. Results of a phase Ⅱ study on the use of neoadjuvant chemotherapy (FOLFIRINOX or GEM/nab-PTX) for borderline-resectable pancreatic cancer (NUPAT-01)[J]. Ann Surg, 2022, 275(6): 1043-1049.
doi: 10.1097/SLA.0000000000005430 |
[75] |
GHANEH P, PALMER D, CICCONI S, et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8(2): 157-168.
doi: 10.1016/S2468-1253(22)00348-X |
[76] |
SMAGLO B G. Role for neoadjuvant systemic therapy for potentially resectable pancreatic cancer[J]. Cancers (Basel), 2023, 15(8): 2377.
doi: 10.3390/cancers15082377 |
[77] |
SEUFFERLEIN T, UHL W, KORNMANN M, et al. Perioperative or only adjuvant gemcitabine plus nab-paclitaxel for resectable pancreatic cancer (NEONAX)-a randomized phase Ⅱ trial of the AIO pancreatic cancer group[J]. Ann Oncol, 2023, 34(1): 91-100.
doi: 10.1016/j.annonc.2022.09.161 |
[78] |
SUGAWARA T, RODRIGUEZ FRANCO S, SHERMAN S, et al. Association of adjuvant chemotherapy in patients with resected pancreatic adenocarcinoma after multiagent neoadjuvant chemotherapy[J]. JAMA Oncol, 2023, 9(3): 316-323.
doi: 10.1001/jamaoncol.2022.5808 |
[79] |
WAINBERG Z A, MELISI D, MACARULLA T, et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial[J]. Lancet, 2023, 402(10409): 1272-1281.
doi: 10.1016/S0140-6736(23)01366-1 pmid: 37708904 |
[80] |
HILMI M, DELAYE M, MUZZOLINI M, et al. The immunological landscape in pancreatic ductal adenocarcinoma and overcoming resistance to immunotherapy[J]. Lancet Gastroenterol Hepatol, 2023, 8(12): 1129-1142.
doi: 10.1016/S2468-1253(23)00207-8 |
[81] |
CHEN I M, DONIA M, CHAMBERLAIN C A, et al. Phase 2 study of ipilimumab, nivolumab, and tocilizumab combined with stereotactic body radiotherapy in patients with refractory pancreatic cancer (TRIPLE-R)[J]. Eur J Cancer, 2023, 180: 125-133.
doi: 10.1016/j.ejca.2022.11.035 pmid: 36592507 |
[82] |
BENDELL J, LORUSSO P, OVERMAN M, et al. First-in-human study of oleclumab, a potent, selective anti-CD73 monoclonal antibody, alone or in combination with durvalumab in patients with advanced solid tumors[J]. Cancer Immunol Immunother, 2023, 72(7): 2443-2458.
doi: 10.1007/s00262-023-03430-6 pmid: 37016126 |
[83] |
KO A H, KIM K P, SIVEKE J T, et al. Atezolizumab plus PEGPH20 versus chemotherapy in advanced pancreatic ductal adenocarcinoma and gastric cancer: MORPHEUS phase Ⅰb/Ⅱ umbrella randomized study platform[J]. Oncologist, 2023, 28(6): 553-e472.
doi: 10.1093/oncolo/oyad022 |
[84] |
LEMECH C, DREDGE K, BAMPTON D, et al. Phase Ⅰb open-label, multicenter study of pixatimod, an activator of TLR9, in combination with nivolumab in subjects with microsatellite-stable metastatic colorectal cancer, metastatic pancreatic ductal adenocarcinoma and other solid tumors[J]. J Immunother Cancer, 2023, 11(1): e006136.
doi: 10.1136/jitc-2022-006136 |
[85] |
ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150.
doi: 10.1038/s41586-023-06063-y |
[86] |
ZHU H, WEI M, XU J, et al. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications[J]. Mol Cancer, 2020, 19(1): 49.
doi: 10.1186/s12943-020-01167-9 pmid: 32122376 |
[87] |
NEVALA-PLAGEMANN C, HIDALGO M, GARRIDO-LAGUNA I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer[J]. Nat Rev Clin Oncol, 2020, 17(2): 108-123.
doi: 10.1038/s41571-019-0281-6 |
[88] |
NAGASAKA M, POTUGARI B, NGUYEN A, et al. KRAS inhibitors- yes but what next? Direct targeting of KRAS- vaccines, adoptive T cell therapy and beyond[J]. Cancer Treat Rev, 2021, 101: 102309.
doi: 10.1016/j.ctrv.2021.102309 |
[89] |
WOOD L D, CANTO M I, JAFFEE E M, et al. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment[J]. Gastroenterology, 2022, 163(2): 386-402.e1.
doi: 10.1053/j.gastro.2022.03.056 |
[90] |
QIAN Y, GONG Y, FAN Z, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2020, 13(1): 130.
doi: 10.1186/s13045-020-00958-3 |
[91] |
SCHULTHEIS B, REUTER D, EBERT M P, et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase Ⅱb study[J]. Ann Oncol, 2017, 28(10): 2429-2435.
doi: 10.1093/annonc/mdx343 |
[92] |
QIN S K, LI J, BAI Y X, et al. Nimotuzumab plus gemcitabine for K-ras wild-type locally advanced or metastatic pancreatic cancer[J]. J Clin Oncol, 2023, 41(33): 5163-5173.
doi: 10.1200/JCO.22.02630 |
[93] |
SHAIB W L, MANALI R, LIU Y, et al. Phase Ⅱ randomised, double-blind study of mFOLFIRINOX plus ramucirumab versus mFOLFIRINOX plus placebo in advanced pancreatic cancer patients (HCRN GI14-198)[J]. Eur J Cancer, 2023, 189: 112847.
doi: 10.1016/j.ejca.2023.02.030 |
[94] |
HUFFMAN B M, BASU MALLICK A, HORICK N K, et al. Effect of a MUC5AC antibody (NPC-1C) administered with second-line gemcitabine and nab-paclitaxel on the survival of patients with advanced pancreatic ductal adenocarcinoma: a randomized clinical trial[J]. JAMA Netw Open, 2023, 6(1): e2249720.
doi: 10.1001/jamanetworkopen.2022.49720 |
[95] |
RODON AHNERT J, TAN D S, GARRIDO-LAGUNA I, et al. Avelumab or talazoparib in combination with binimetinib in metastatic pancreatic ductal adenocarcinoma: dose-finding results from phase Ⅰb of the JAVELIN PARP MEKi trial[J]. ESMO Open, 2023, 8(4): 101584.
doi: 10.1016/j.esmoop.2023.101584 |
[1] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[2] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[3] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[4] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[5] | 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160. |
[6] | 徐梓淇, 胡睿智, 李军建, 王红霞, 桑友洲. 甲基化驱动基因IFFO1在胰腺癌诊断和预后中的作用及对癌细胞生物学行为的影响[J]. 中国癌症杂志, 2024, 34(11): 998-1010. |
[7] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[8] | 渠宁, 王钰婷, 马奔, 王宇. 2022年度甲状腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(5): 423-430. |
[9] | 蒋金玲, 周尘飞, 王超, 赵丽琴, 吴珺玮, 张俊. 2022年度胃癌研究和诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 303-314. |
[10] | 赵海潮, 高强. 2022年度肝癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 315-326. |
[11] | 田熙, 徐文浩, 朱殊璇, 艾合太木江·安外尔, 宿佳琦, 叶世琪, 瞿元元, 施国海, 张海梁, 叶定伟. 2022年度肾细胞癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 191-200. |
[12] | 郑盛锋, 朱一平, 叶定伟. 2022年度膀胱癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 201-209. |
[13] | 潘剑, 朱耀, 戴波, 叶定伟. 2022年度前列腺癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 210-217. |
[14] | 曾铖, 张剑. 2022年度ADC在胰腺癌领域的研究新进展及展望[J]. 中国癌症杂志, 2023, 33(3): 235-240. |
[15] | 符庆胜, 金雷, 张旭东, 徐荧晨, 朱春富, 秦锡虎, 吴宝强. tRF-Pro-CGG对小鼠胰腺癌细胞生物学行为的影响及其分子机制[J]. 中国癌症杂志, 2023, 33(3): 241-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn