中国癌症杂志 ›› 2025, Vol. 35 ›› Issue (1): 1-11.doi: 10.19401/j.cnki.1007-3639.2025.01.001
收稿日期:
2024-12-31
修回日期:
2025-01-21
出版日期:
2025-01-30
发布日期:
2025-02-17
通信作者:
虞先濬
作者简介:
王婷(ORCID: 0000-0002-8831-6215),博士。基金资助:
WANG Ting(), QIN Yi, XU Xiaowu, YU Xianjun(
)
Received:
2024-12-31
Revised:
2025-01-21
Published:
2025-01-30
Online:
2025-02-17
Contact:
YU Xianjun
Supported by:
文章分享
摘要:
胰腺癌是一种恶性程度极高的恶性肿瘤,其发病率自2000年以来呈缓慢增长趋势。尽管诊疗水平的提升促使胰腺癌患者的5年生存率相较于50年前有了一定提高,但仍是预后不容乐观的恶性肿瘤之一。步入2024年,胰腺癌早期筛查策略、疾病机制探索、临床诊疗方案等研究领域取得了诸多进展,并显示出良好的临床应用前景。早期筛查方面,人工智能(artificial intelligence,AI)技术赋能胰腺癌早诊、早筛,使临床诊疗踏上新台阶;此外,液体活检等技术的准确率提升,为胰腺癌早筛提供了新方向。疾病发病机制研究方面,3D基因组映射技术揭示了胰腺导管上皮内瘤变(pancreatic intraepithelial neoplasm,PanIN)的多克隆起源和遗传异质性。基础研究方面,模拟胰腺癌独特结构特征的分支器官模拟系统为胰腺癌体外研究提供了新模型;肿瘤重要代谢物乳酸将胰腺癌代谢微环境与表观遗传学改变联系在一起,揭示了潜在治疗靶点;组蛋白H3K36三甲基转移酶SETD2缺陷导致胰腺癌内源性表观遗传失调,并促进线粒体氧化磷酸化(oxidative phosphorylation,OXPHOS)和肿瘤进展;基质细胞与癌细胞间信号分子血小板衍生生长因子受体(platelet-derived growth factor receptor,PDGFR)轴形成双向分泌回路,或能成为治疗新靶点;嵌合抗原受体巨噬细胞(chimeric antigen receptor macrophage,CAR-M)靶向c-MET的疗法展现出与化疗药物协同增效的潜力;胰腺癌微环境中的巨噬细胞通过CCL5/TRAF6/核因子-κB(nuclear factor-κB,NF-κB)通路促进胰腺癌恶病质进展,表明巨噬细胞有望成为预测及干预胰腺癌恶病质发生、发展的有效靶点。诊疗方面,新辅助化疗后手术可改善可切除与交界可切除患者的总生存(overall survival,OS),但仍需进一步优化新辅助化疗方案;首个临床有效的KRASG12D靶向药物已见报道,广谱KRAS突变体抑制剂研究不断涌现;通过糖酵解相关评分(glycolysis-related scores,GRS)进行患者分层能够进一步指导治疗方案选择;“智能外泌体”(ExoSmart)通过增强细胞摄取能力协助提高化疗效果;免疫治疗联合化疗临床试验的实施,有望协同提高胰腺癌疗效;派安普利单抗和安罗替尼联合白蛋白结合型紫杉醇/吉西他滨(PAAG)在一线转移性胰腺癌(metastatic pancreatic cancer,mPC)患者中显示出较好的疗效和安全性;靶向KRAS突变编码新抗原的癌症疫苗ELI-002 2P能够诱导抗肿瘤免疫反应;溶瘤腺病毒疗法能够协同化疗药物提高晚期胰腺导管腺癌患者的疗效。本文就2024年度胰腺癌基础研究和诊疗领域的最新重大进展进行综述。
中图分类号:
王婷, 秦毅, 徐晓武, 虞先濬. 2024年胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2025, 35(1): 1-11.
WANG Ting, QIN Yi, XU Xiaowu, YU Xianjun. New advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2024[J]. China Oncology, 2025, 35(1): 1-11.
[1] | SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. |
[2] | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
[3] | WU Y, HE S, CAO M, et al. Comparative analysis of cancer statistics in China and the United States in 2024[J]. Chin Med J (Engl), 2024, 137(24): 3093-3100. |
[4] |
KAMISAWA T, WOOD L D, ITOI T, et al. Pancreatic cancer[J]. Lancet, 2016, 388(10039): 73-85.
doi: 10.1016/S0140-6736(16)00141-0 pmid: 26830752 |
[5] | MAZER B L, LEE J W, ROBERTS N J, et al. Screening for pancreatic cancer has the potential to save lives, but is it practical?[J]. Expert Rev Gastroenterol Hepatol, 2023, 17(6): 555-574. |
[6] |
PREVENTIVE SERVICES TASK FORCE U S, OWENS D K, DAVIDSON K W, et al. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement[J]. JAMA, 2019, 322(5): 438-444.
doi: 10.1001/jama.2019.10232 pmid: 31386141 |
[7] | DBOUK M, KATONA B W, BRAND R E, et al. The multicenter cancer of pancreas screening study: impact on stage and survival[J]. J Clin Oncol, 2022, 40(28): 3257-3266. |
[8] |
VASEN H, IBRAHIM I, PONCE C G, et al. Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European expert centers[J]. J Clin Oncol, 2016, 34(17): 2010-2019.
doi: 10.1200/JCO.2015.64.0730 pmid: 27114589 |
[9] |
CANTO M I, ALMARIO J A, SCHULICK R D, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance[J]. Gastroenterology, 2018, 155(3): 740-751.e2.
doi: S0016-5085(18)34568-2 pmid: 29803839 |
[10] |
CALDERWOOD A H, SAWHNEY M S, THOSANI N C, et al. American Society for Gastrointestinal Endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: methodology and review of evidence[J]. Gastrointest Endosc, 2022, 95(5): 827-854.e3.
doi: 10.1016/j.gie.2021.12.002 pmid: 35183359 |
[11] |
BLACKFORD A L, CANTO M I, DBOUK M, et al. Pancreatic cancer surveillance and survival of high-risk individuals[J]. JAMA Oncol, 2024, 10(8): 1087-1096.
doi: 10.1001/jamaoncol.2024.1930 pmid: 38959011 |
[12] | RAMÍREZ-MALDONADO E, LÓPEZ GORDO S, MAJOR BRANCO R P, et al. Clinical application of liquid biopsy in pancreatic cancer: a narrative review[J]. Int J Mol Sci, 2024, 25(3): 1640. |
[13] | LAN B, ZENG S Y, GRÜTZMANN R, et al. The role of exosomes in pancreatic cancer[J]. Int J Mol Sci, 2019, 20(18): 4332. |
[14] |
LUO G P, LIU C, GUO M, et al. Potential biomarkers in lewis negative patients with pancreatic cancer[J]. Ann Surg, 2017, 265(4): 800-805.
doi: 10.1097/SLA.0000000000001741 pmid: 28267695 |
[15] |
FAHRMANN J F, MAX SCHMIDT C, MAO X Y, et al. Lead-time trajectory of CA19-9 as an anchor marker for pancreatic cancer early detection[J]. Gastroenterology, 2021, 160(4): 1373-1383.e6.
doi: 10.1053/j.gastro.2020.11.052 pmid: 33333055 |
[16] | RAHBARGHAZI R, JABBARI N, SANI N A, et al. Tumor-derived extracellular vesicles: reliable tools for cancer diagnosis and clinical applications[J]. Cell Commun Signal, 2019, 17(1): 73. |
[17] | LI H, CHIANG C L, KWAK K J, et al. Extracellular vesicular analysis of glypican 1 mRNA and protein for pancreatic cancer diagnosis and prognosis[J]. Adv Sci (Weinh), 2024, 11(11): e2306373. |
[18] |
LIU M C, OXNARD G R, KLEIN E A, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA[J]. Ann Oncol, 2020, 31(6): 745-759.
doi: 10.1016/j.annonc.2020.02.011 pmid: 33506766 |
[19] |
DOR Y, CEDAR H. Principles of DNA methylation and their implications for biology and medicine[J]. Lancet, 2018, 392(10149): 777-786.
doi: S0140-6736(18)31268-6 pmid: 30100054 |
[20] |
SCHRAG D, BEER T M, MCDONNELL C H 3rd, et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study[J]. Lancet, 2023, 402(10409): 1251-1260.
doi: 10.1016/S0140-6736(23)01700-2 pmid: 37805216 |
[21] | 中国抗癌协会肿瘤标志专业委员会. 肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)[J]. 中国癌症防治杂志, 2024, 16(2): 129-142. |
Committee of Tumor Biomarker of China Anti-Cancer Association. Expert consensus on the detection and clinical application of tumor DNA methylation biomarkers (2024 edition)[J]. Chin J of Oncol Prev and Treat, 2024, 16(2): 129-142. | |
[22] | BEN-AMI R, WANG Q L, ZHANG J M, et al. Protein biomarkers and alternatively methylated cell-free DNA detect early stage pancreatic cancer[J]. Gut, 2024, 73(4): 639-648. |
[23] | CAO K, XIA Y D, YAO J W, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning[J]. Nat Med, 2023, 29(12): 3033-3043. |
[24] | MAITRA A, TOPOL E J. Early detection of pancreatic cancer and AI risk partitioning[J]. Lancet, 2024, 403(10435): 1438. |
[25] | DAHER H, PUNCHAYIL S A, ISMAIL A A E, et al. Advancements in pancreatic cancer detection: integrating biomarkers, imaging technologies, and machine learning for early diagnosis[J]. Cureus, 2024, 16(3): e56583. |
[26] | BRAXTON A M, KIEMEN A L, GRAHN M P, et al. 3D genomic mapping reveals multifocality of human pancreatic precancers[J]. Nature, 2024, 629(8012): 679-687. |
[27] | DREYER S B, UPSTILL-GODDARD R, LEGRINI A, et al. Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence[J]. Gastroenterology, 2022, 162(1): 320-324.e4. |
[28] |
PUNEKAR S R, VELCHETI V, NEEL B G, et al. The current state of the art and future trends in RAS-targeted cancer therapies[J]. Nat Rev Clin Oncol, 2022, 19(10): 637-655.
doi: 10.1038/s41571-022-00671-9 pmid: 36028717 |
[29] |
LUO J. KRAS mutation in pancreatic cancer[J]. Semin Oncol, 2021, 48(1): 10-18.
doi: 10.1053/j.seminoncol.2021.02.003 pmid: 33676749 |
[30] | MCINTYRE C A, GRIMONT A, PARK J, et al. Distinct clinical outcomes and biological features of specific KRAS mutants in human pancreatic cancer[J]. Cancer Cell, 2024, 42(9): 1614-1629.e5. |
[31] | MAHADEVAN K K, MCANDREWS K M, LEBLEU V S, et al. KRASG12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells[J]. Cancer Cell, 2023, 41(9): 1606-1620.e8. |
[32] | Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation-PubMed[J/OL]. [2024-12-19]. https://pubmed.ncbi.nlm.nih.gov/37611121/. |
[33] | STRICKLER J H, SATAKE H, GEORGE T J, et al. Sotorasib in KRAS advanced pancreatic cancer[J]. N Engl J Med, 2023, 388(1): 33-43. |
[34] |
ZHENG Q H, ZHANG Z Y, GUILEY K Z, et al. Strain-release alkylation of Asp12 enables mutant selective targeting of K-Ras-G12D[J]. Nat Chem Biol, 2024, 20: 1114-1122.
doi: 10.1038/s41589-024-01565-w pmid: 38443470 |
[35] | HALLIN J, BOWCUT V, CALINISAN A, et al. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor[J]. Nat Med, 2022, 28(10): 2171-2182. |
[36] | WANG X L, ALLEN S, BLAKE J F, et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor[J]. J Med Chem, 2022, 65(4): 3123-3133. |
[37] | WEI D Y, WANG L, ZUO X S, et al. A small molecule with big impact: MRTX1133 targets the KRAS G12D mutation in pancreatic cancer[J]. Clin Cancer Res, 2024, 30(4): 655-662. |
[38] | ZHOU C C, LI C Y, LUO L B, et al. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer[J]. Cancer Cell, 2024, 42(7): 1286-1300.e8. |
[39] | KIM D, HERDEIS L, RUDOLPH D, et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth[J]. Nature, 2023, 619(7968): 160-166. |
[40] | WASKO U N, JIANG J J, DALTON T C, et al. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer[J]. Nature, 2024, 629(8013): 927-936. |
[41] | JIANG J J, JIANG L Y, MALDONATO B J, et al. Translational and therapeutic evaluation of RAS-GTP inhibition by RMC-6236 in RAS-driven cancers[J]. Cancer Discov, 2024, 14(6): 994-1017. |
[42] |
EVAN T, WANG V M, BEHRENS A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma[J]. Oncogene, 2022, 41(42): 4686-4695.
doi: 10.1038/s41388-022-02448-x pmid: 36088504 |
[43] |
COLLISSON E A, BAILEY P, CHANG D K, et al. Molecular subtypes of pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(4): 207-220.
doi: 10.1038/s41575-019-0109-y pmid: 30718832 |
[44] | PAPARGYRIOU A, NAJAJREH M, COOK D P, et al. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma[J]. Nat Biomed Eng, 2024. |
[45] | CHANG Y, CHEN Q, LI H, et al. The UBE2F-CRL5ASB11-DIRAS2 axis is an oncogene and tumor suppressor cascade in pancreatic cancer cells[J]. Dev Cell, 2024, 59(10): 1317-1332.e5. |
[46] |
YANG J S, REN B, YANG G, et al. The enhancement of glycolysis regulates pancreatic cancer metastasis[J]. Cell Mol Life Sci, 2020, 77(2): 305-321.
doi: 10.1007/s00018-019-03278-z pmid: 31432232 |
[47] | EL KAOUTARI A, FRAUNHOFFER N A, AUDEBERT S, et al. Pancreatic ductal adenocarcinoma ubiquitination profiling reveals specific prognostic and theranostic markers[J]. EBioMedicine, 2023, 92: 104634. |
[48] |
LIN J, LIU G, CHEN L D, et al. Targeting lactate-related cell cycle activities for cancer therapy[J]. Semin Cancer Biol, 2022, 86(Pt 3): 1231-1243.
doi: 10.1016/j.semcancer.2022.10.009 pmid: 36328311 |
[49] | LI H D, SUN L C, GAO P, et al. Lactylation in cancer: current understanding and challenges[J]. Cancer Cell, 2024, 42(11): 1803-1807. |
[50] | LI F, SI W Z, XIA L, et al. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2024, 23(1): 90. |
[51] |
NIU N N, SHEN X Q, WANG Z, et al. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer[J]. Cancer Cell, 2024, 42(5): 869-884.e9.
doi: 10.1016/j.ccell.2024.03.005 pmid: 38579725 |
[52] | HO W J, JAFFEE E M, ZHENG L. The tumour microenvironment in pancreatic cancer: clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17: 527-540. |
[53] | HUANG P W, GAO W N, FU C Y, et al. Clinical functional proteomics of intercellular signalling in pancreatic cancer[J]. Nature, 2025, 637: 726-735. |
[54] | UPADHRASTA S, ZHENG L. Strategies in developing immunotherapy for pancreatic cancer: recognizing and correcting multiple immune “defects” in the tumor microenvironment[J]. J Clin Med, 2019, 8(9): 1472. |
[55] | Immunotherapy for pancreatic cancer: barriers and breakthroughs-torphy-2018-annals of gastroenterological surgery-wiley online library[EB/OL]. [2024-12-19]. https://onlinelibrary.wiley.com/doi/10.1002/ags3.12176. |
[56] | YE X R, YU Y, ZHENG X H, et al. Clinical immunotherapy in pancreatic cancer[J]. Cancer Immunol Immunother, 2024, 73(4): 64. |
[57] | LIU R J, LI J N, LIU L, et al. Tumor-associated macrophages (TAMs): constructing an immunosuppressive microenvironment bridge for pancreatic ductal adenocarcinoma (PDAC)[J]. Cancer Pathog Ther, 2024. |
[58] | ZHENG H J, YANG X Z, HUANG N, et al. Chimeric antigen receptor macrophages targeting c-MET (CAR-M-c-MET) inhibit pancreatic cancer progression and improve cytotoxic chemotherapeutic efficacy[J]. Mol Cancer, 2024, 23(1): 270. |
[59] | Pancreatic cancer and cachexia-metabolic mechanisms and novel insights-PubMed[EB/OL]. [2024-12-19]. https://pubmed.ncbi.nlm.nih.gov/32466362/. |
[60] | YULE M S, BROWN L R, WALLER R, et al. Cancer cachexia[J]. BMJ, 2024, 387: e080040. |
[61] |
LIU M Y, REN Y, ZHOU Z J, et al. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia[J]. Cancer Cell, 2024, 42(5): 885-903.e4.
doi: 10.1016/j.ccell.2024.03.009 pmid: 38608702 |
[62] |
MIZRAHI J D, SURANA R, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020.
doi: S0140-6736(20)30974-0 pmid: 32593337 |
[63] |
STOOP T F, THEIJSE R T, SEELEN L W F, et al. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(2): 101-124.
doi: 10.1038/s41575-023-00856-2 pmid: 38036745 |
[64] |
HE J X, LV N, YANG Z Y, et al. Comparing upfront surgery with neoadjuvant treatments in patients with resectable, borderline resectable or locally advanced pancreatic cancer: a systematic review and network meta-analysis of randomized clinical trials[J]. Int J Surg, 2024, 110(6): 3900-3909.
doi: 10.1097/JS9.0000000000001313 pmid: 38935819 |
[65] | CONROY T, HAMMEL P, HEBBAR M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer[J]. N Engl J Med, 2018, 379(25): 2395-2406. |
[66] |
NEOPTOLEMOS J P, PALMER D H, GHANEH P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet, 2017, 389(10073): 1011-1024.
doi: S0140-6736(16)32409-6 pmid: 28129987 |
[67] | CONROY T, DESSEIGNE F, YCHOU M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer[J]. N Engl J Med, 2011, 364(19): 1817-1825. |
[68] |
SUKER M, BEUMER B R, SADOT E, et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis[J]. Lancet Oncol, 2016, 17(6): 801-810.
doi: S1470-2045(16)00172-8 pmid: 27160474 |
[69] | LABORI K J, BRATLIE S O, ANDERSSON B, et al. Neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer (NORPACT-1): a multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2024, 9(3): 205-217. |
[70] | GOLAN T, KINDLER H L, PARK J O, et al. Geographic and ethnic heterogeneity of germline BRCA1 or BRCA2 mutation prevalence among patients with metastatic pancreatic cancer screened for entry into the POLO trial[J]. J Clin Oncol, 2020, 38(13): 1442-1454. |
[71] | National Comprehensive Cancer Network. Pancreatic adenocarcinoma, version 2.2024. NCCN clinical practice guidelines in oncology[EB/OL]. [2024-12-19]. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. |
[72] | XIAO M M, TANG R, PAN H Q, et al. TPX2 serves as a novel target for expanding the utility of PARPi in pancreatic cancer through conferring synthetic lethality[J]. Gut, 2024: gutjnl-2024-332782. |
[73] | GE W Y, WANG Y L, QUAN M, et al. Activation of the PI3K/AKT signaling pathway by ARNTL2 enhances cellular glycolysis and sensitizes pancreatic adenocarcinoma to erlotinib[J]. Mol Cancer, 2024, 23(1): 48. |
[74] | MOORE M J, GOLDSTEIN D, HAMM J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase Ⅲ trial of the National Cancer Institute of Canada Clinical Trials Group[J]. J Clin Oncol, 2007, 25(15): 1960-1966. |
[75] | CREEDEN J F, SEVIER J, ZHANG J T, et al. Smart exosomes enhance PDAC targeted therapy[J]. J Control Release, 2024, 368: 413-429. |
[76] | TIMMER F E F, GEBOERS B, RUARUS A H, et al. MRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2024, 9(5): 448-459. |
[77] | TIMMER F E F, GEBOERS B, NIEUWENHUIZEN S, et al. Pancreatic cancer and immunotherapy: a clinical overview[J]. Cancers (Basel), 2021, 13(16): 4138. |
[78] | TAO J X, YANG G, ZHOU W C, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1): 14. |
[79] | CHENG K, LI X Y, LV W R, et al. Spatial interactions of immune cells as potential predictors to efficacy of toripalimab plus chemotherapy in locally advanced or metastatic pancreatic ductal adenocarcinoma: a phase Ⅰb/Ⅱ trial[J]. Signal Transduct Target Ther, 2024, 9: 321. |
[80] | GOURGOU-BOURGADE S, BASCOUL-MOLLEVI C, DESSEIGNE F, et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial[J]. J Clin Oncol, 2013, 31(1): 23-29. |
[81] | GIORDANO G, MILELLA M, LANDRISCINA M, et al. Prognostic analysis and outcomes of metastatic pancreatic cancer patients receiving nab-paclitaxel plus gemcitabine as second or later-line treatment[J]. Cancer Med, 2024, 13(12): e7345. |
[82] | VON HOFF D D, ERVIN T, ARENA F P, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369(18): 1691-1703. |
[83] | SHA H Z, TONG F, NI J Y, et al. First-line penpulimab (an anti-PD1 antibody) and anlotinib (an angiogenesis inhibitor) with nab-paclitaxel/gemcitabine (PAAG) in metastatic pancreatic cancer: a prospective, multicentre, biomolecular exploratory, phase Ⅱ trial[J]. Signal Transduct Target Ther, 2024, 9(1): 143. |
[84] | ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150. |
[85] |
PANT S, WAINBERG Z A, WEEKES C D, et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial[J]. Nat Med, 2024, 30(2): 531-542.
doi: 10.1038/s41591-023-02760-3 pmid: 38195752 |
[86] |
CLARK C E, HINGORANI S R, MICK R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion[J]. Cancer Res, 2007, 67(19): 9518-9527.
doi: 10.1158/0008-5472.CAN-07-0175 pmid: 17909062 |
[87] |
MUSHER B L, ROWINSKY E K, SMAGLO B G, et al. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study[J]. Lancet Oncol, 2024, 25(4): 488-500.
doi: 10.1016/S1470-2045(24)00079-2 pmid: 38547893 |
[88] |
PARK W, CHAWLA A, O’REILLY E. Pancreatic cancer: a review[J]. JAMA, 2021, 326(9): 851-862.
doi: 10.1001/jama.2021.13027 pmid: 34547082 |
[89] | OSIPOV A, NIKOLIC O, GERTYCH A, et al. The Molecular Twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients[J]. Nat Cancer, 2024, 5(2): 299-314. |
[1] | 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570. |
[2] | 陈虹, 曹治云. 人源胰腺癌类器官模型的构建及应用新进展[J]. 中国癌症杂志, 2024, 34(6): 590-597. |
[3] | 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142. |
[4] | 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150. |
[5] | 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160. |
[6] | 任加强, 武帅, 苏童, 李杰, 韩亮, 仵正. 胰腺癌吉西他滨化疗耐药生物标志物—INPP4B的探索性研究[J]. 中国癌症杂志, 2024, 34(12): 1090-1099. |
[7] | 徐梓淇, 胡睿智, 李军建, 王红霞, 桑友洲. 甲基化驱动基因IFFO1在胰腺癌诊断和预后中的作用及对癌细胞生物学行为的影响[J]. 中国癌症杂志, 2024, 34(11): 998-1010. |
[8] | 谭小浪, 姚莎, 王桂华, 彭罗根. uPAR通过MAPK信号抑制细胞自噬促进胰腺癌增殖、侵袭及化疗抵抗的作用研究[J]. 中国癌症杂志, 2024, 34(10): 944-956. |
[9] | 李天骄, 叶龙云, 金凯舟, 吴伟顶, 虞先濬. 2023年度胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2024, 34(1): 1-12. |
[10] | 渠宁, 王钰婷, 马奔, 王宇. 2022年度甲状腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(5): 423-430. |
[11] | 蒋金玲, 周尘飞, 王超, 赵丽琴, 吴珺玮, 张俊. 2022年度胃癌研究和诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 303-314. |
[12] | 赵海潮, 高强. 2022年度肝癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 315-326. |
[13] | 田熙, 徐文浩, 朱殊璇, 艾合太木江·安外尔, 宿佳琦, 叶世琪, 瞿元元, 施国海, 张海梁, 叶定伟. 2022年度肾细胞癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 191-200. |
[14] | 郑盛锋, 朱一平, 叶定伟. 2022年度膀胱癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 201-209. |
[15] | 潘剑, 朱耀, 戴波, 叶定伟. 2022年度前列腺癌基础研究及临床诊疗新进展[J]. 中国癌症杂志, 2023, 33(3): 210-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:上海市徐汇区东安路270号复旦大学附属肿瘤医院10号楼415室
邮编:200032 电话:021-64188274 E-mail:zgazzz@china-oncology.com
访问总数:; 今日访问总数:; 当前在线人数:
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn