China Oncology ›› 2022, Vol. 32 ›› Issue (5): 380-387.doi: 10.19401/j.cnki.1007-3639.2022.05.002
• Specialists' Article • Previous Articles Next Articles
SUN Di1,2()(
), SUN Yuqing1,2, ZHANG Xin1,2, HUANG Lisha3, LIN Yansong1,2(
)(
)
Received:
2022-04-15
Revised:
2022-05-04
Online:
2022-05-30
Published:
2022-06-09
Contact:
LIN Yansong
E-mail:mercurysd@163.com;linys@pumch.cn
Share article
CLC Number:
SUN Di, SUN Yuqing, ZHANG Xin, HUANG Lisha, LIN Yansong. The relationship between genetic characteristics and clinical characteristics and the efficacy of 131I therapy in children and adolescents with locally advanced or metastatic differentiated thyroid cancer[J]. China Oncology, 2022, 32(5): 380-387.
Tab. 1
Clinical characteristics and genetic variations of 39 children and adolescents thyroid cancer patients"
Clinical characteristic | All patients | Mutation negative | Mutation positive | P value | U value |
---|---|---|---|---|---|
Age at diagnosis/year median (IQR) | 12.1 (9.1-16.2) | 11.9 (7.3-14.1) | 13.1 (10.0-16.8) | 0.172 | 228.000 |
Adolescence or not | 0.323* | ||||
Children | 21 | 10 | 11 | ||
Adolescent | 18 | 5 | 13 | ||
Gender | 0.742* | ||||
Male | 18 | 6 | 12 | ||
Female | 21 | 9 | 12 | ||
Number of surgery median (IQR) | 2 (1-2) | 1 (1-2) | 2 (1-2) | 0.618 | 198.000 |
Tumor size D/cm median (IQR) | 2.7 (1.5-3.9) | 3.0 (1.4-3.5) | 2.5 (1.5-4.0) | 0.558 | 130.500 |
Histology | 1.000* | ||||
PTC | 38 | 15 | 23 | ||
FTC | 1 | 0 | 1 | ||
T stage | 0.471 | 145.500 | |||
T1+T2 | 16 | 7 | 9 | ||
T3+T4 | 17 | 5 | 12 | ||
NA | 6 | 3 | 3 | ||
N stage | 0.601 | 158.500 | |||
N1a | 3 | 2 | 1 | ||
N1b | 32 | 11 | 21 | ||
NA | 4 | 2 | 2 | ||
M stage | 1.000* | ||||
M0 | 15 | 6 | 9 | ||
M1 | 24 | 9 | 15 | ||
Number of RAI therapy median (IQR) | 2 (1-2) | 1 (1-3) | 2 (1-2) | 0.943 | 177.500 |
Cumulative RAI dose D/mCi median (IQR) | 180 (125-300) | 160 (70-225) | 260 (150-300) | 0.202 | 207.000 |
RAIR or not | 0.228* | ||||
No | 30 | 11 | 19 | ||
Yes | 9 | 1 | 8 | ||
Follow-up period t/month median (IQR) | 40.0 (21.0-57.0) | 36.0 (21.0-72.0) | 41.5 (23.0-56.8) | 0.700 | 193.500 |
ATA response classification at last follow-up | 0.853 | 186.500 | |||
ER | 5 | 2 | 3 | ||
IDR | 8 | 3 | 5 | ||
BIR | 4 | 2 | 2 | ||
SIR | 22 | 8 | 14 |
Tab. 2
Detailed information of 9 patients with RAIR-DTC"
No. | Age at diagnosis/year | Gender | Number of surgery | Tumor size D/cm | Histology (subtype) | T stage | N stage | M stage (site) | Number of RAI therapy | Cumulative RAI dose D/mCi | Follow-up period t/month | Classification of RAIR | Genetic variation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 16.0 | Male | 2 | 4 | PTC (classic) | 3b | 1b | 1 (lung) | 2 | 270 | 51 | 4* | NCOA4/RET fusion |
2 | 7.0 | Male | 1 | 2.8 | PTC (follicular) | 3b | 1b | 1 (lung) | 2 | 250 | 57 | 4* | TP53 R213E mutation, NCOA4/RET fusion |
3 | 13.2 | Female | 1 | 4.0 | PTC (NA) | 2 | 1b | 1 (lung) | 3 | 425 | 43 | 4* | NCOA4/RET fusion |
4 | 14.8 | Male | 2 | 3.5 | PTC (classic) | 2 | 1b | 1 (lung) | 2 | 300 | 52 | 4* | NCOA4/RET fusion |
5 | 11.9 | Female | 3 | 2.5 | PTC (NA) | 4a | 1b | 1 (lung) | 2 | 270 | 45 | 2# | NCOA4/RET fusion |
6 | 8.9 | Male | 2 | 2.5 | PTC (DSV) | 2 | 1b | 1 (lung) | 5 | 280 | 78 | 4* | CCDC6/RET fusion |
7 | 9.1 | Female | 1 | 1.5 | PTC (classic) | 3b | 1b | 1 (lung) | 2 | 165 | 40 | 1△ | TFG/NTRK1 fusion |
8 | 16.8 | Male | 3 | 4.5 | PTC (classic) | 4b | 1b | 1 (lung & bone) | 2 | 180 | 134 | 1△ | BRAF V600E mutation |
9 | 11.2 | Female | 2 | 1.4 | PTC (NA) | 1b | 1b | 1 (lung) | 3 | 315 | 106 | 1△ | negative |
[1] |
WARD E, DESANTIS C, ROBBINS A, et al. Childhood and adolescent cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(2): 83-103.
doi: 10.3322/caac.21219 |
[2] |
MILLER K D, FIDLER-BENAOUDIA M, KEEGAN T H, et al. Cancer statistics for adolescents and young adults, 2020[J]. CA Cancer J Clin, 2020, 70(6): 443-459.
doi: 10.3322/caac.21637 |
[3] |
BERNIER M O, WITHROW D R, BERRINGTON DE GONZALEZ A, et al. Trends in pediatric thyroid cancer incidence in the United States, 1998-2013[J]. Cancer, 2019, 125(14): 2497-2505.
doi: 10.1002/cncr.32125 |
[4] |
HAY I D, GONZALEZ-LOSADA T, REINALDA M S, et al. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008[J]. World J Surg, 2010, 34(6): 1192-1202.
doi: 10.1007/s00268-009-0364-0 |
[5] |
ALZAHRANI A S, MURUGAN A K, QASEM E, et al. Single point mutations in pediatric differentiated thyroid cancer[J]. Thyroid, 2017, 27(2): 189-196.
doi: 10.1089/thy.2016.0339 |
[6] |
HAY I D, JOHNSON T R, KAGGAL S, et al. Papillary thyroid carcinoma (PTC) in children and adults: comparison of initial presentation and long-term postoperative outcome in 4 432 patients consecutively treated at the mayo clinic during eight decades (1936-2015)[J]. World J Surg, 2018, 42(2): 329-342.
doi: 10.1007/s00268-017-4279-x |
[7] |
PAWELCZAK M, DAVID R, FRANKLIN B, et al. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following ¹³¹I treatment: a systematic review[J]. Thyroid, 2010, 20(10): 1095-1101.
doi: 10.1089/thy.2009.0446 |
[8] |
ALZAHRANI A S, ALSWAILEM M, MORIA Y, et al. Lung metastasis in pediatric thyroid cancer: radiological pattern, molecular genetics, response to therapy, and outcome[J]. J Clin Endocrinol Metab, 2019, 104(1): 103-110.
doi: 10.1210/jc.2018-01690 |
[9] |
BIKO J, REINERS C, KREISSL M C, et al. Favourable course of disease after incomplete remission on (131)I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up[J]. Eur J Nucl Med Mol Imaging, 2011, 38(4): 651-655.
doi: 10.1007/s00259-010-1669-9 |
[10] |
CORDIOLI M I, MORAES L, CURY A N, et al. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma?[J]. Endocr Relat Cancer, 2015, 22(6): R311-R324.
doi: 10.1530/ERC-15-0381 |
[11] |
ALZAHRANI A S, QASEM E, MURUGAN A K, et al. Uncommon TERT promoter mutations in pediatric thyroid cancer[J]. Thyroid, 2016, 26(2): 235-241.
doi: 10.1089/thy.2015.0510 |
[12] |
ALZAHRANI A S, ALSWAILEM M, ALSWAILEM A A, et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel[J]. J Clin Endocrinol Metab, 2020, 105(10): 3324-3334.
doi: 10.1210/clinem/dgaa389 |
[13] |
GUO K, QIAN K, SHI Y, et al. Clinical and molecular characterizations of papillary thyroid cancer in children and young adults: a multicenter retrospective study[J]. Thyroid, 2021, 31(11): 1693-1706.
doi: 10.1089/thy.2021.0003 |
[14] | AMIN M B, EDGE S B, GREENE F L, et al. AJCC cancer staging manual[M]. 8th ed. New York: Springer, 2017. |
[15] |
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133.
doi: 10.1089/thy.2015.0020 |
[16] |
GALUPPINI F, VIANELLO F, CENSI S, et al. Differentiated thyroid carcinoma in pediatric age: genetic and clinical scenario[J]. Front Endocrinol (Lausanne), 2019, 10: 552.
doi: 10.3389/fendo.2019.00552 |
[17] |
FRANCIS G L, WAGUESPACK S G, BAUER A J, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2015, 25(7): 716-759.
doi: 10.1089/thy.2014.0460 |
[18] | SATAPATHY S, BAL C. Genomic landscape of sporadic pediatric differentiated thyroid cancers: a systematic review and meta-analysis[J]. J Pediatr Endocrinol Metab, 2022. Online ahead of print. |
[19] |
RANGEL-POZZO A, SISDELLI L, CORDIOLI M I V, et al. Genetic landscape of papillary thyroid carcinoma and nuclear architecture: an overview comparing pediatric and adult populations[J]. Cancers, 2020, 12(11): 3146.
doi: 10.3390/cancers12113146 |
[20] | NIKIFOROV Y E, ROWLAND J M, BOVE K E, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children[J]. Cancer Res, 1997, 57(9): 1690-1694. |
[21] |
GERTZ R J, NIKIFOROV Y, REHRAUER W, et al. Mutation in BRAF and other members of the MAPK pathway in papillary thyroid carcinoma in the pediatric population[J]. Arch Pathol Lab Med, 2016, 140(2): 134-139.
doi: 10.5858/arpa.2014-0612-OA |
[22] |
FRANCO A T, RICARTE-FILHO J C, LAETSCH T W, et al. Oncogene-specific inhibition in the treatment of advanced pediatric thyroid cancer[J]. J Clin Invest, 2021, 131(18): e152696.
doi: 10.1172/JCI152696 |
[23] |
PEKOVA B, SYKOROVA V, DVORAKOVA S, et al. RET, NTRK, ALK, BRAF and MET fusions in a large cohort of pediatric papillary thyroid carcinomas[J]. Thyroid, 2020, 30(12): 1771-1780.
doi: 10.1089/thy.2019.0802 |
[24] |
OISHI N, KONDO T, NAKAZAWA T, et al. Frequent BRAF V600E and absence of TERT promoter mutations characterize sporadic pediatric papillary thyroid carcinomas in Japan[J]. Endocr Pathol, 2017, 28(2): 103-111.
doi: 10.1007/s12022-017-9470-y |
[25] | NIKIFOROV Y E, NIKIFOROVA M N, GNEPP D R, et al. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident[J]. Oncogene, 1996, 13(4): 687-693. |
[26] |
SMIDA J, ZITZELSBERGER H, KELLERER A M, et al. p53 mutations in childhood thyroid tumours from Belarus and in thyroid tumours without radiation history[J]. Int J Cancer, 1997, 73(6): 802-807.
doi: 10.1002/(SICI)1097-0215(19971210)73:6<802::AID-IJC5>3.0.CO;2-6 |
[27] |
MALAGUARNERA R, VELLA V, VIGNERI R, et al. p53 family proteins in thyroid cancer[J]. Endocr Relat Cancer, 2007, 14(1): 43-60.
doi: 10.1677/erc.1.01223 |
[28] |
MARTI J L, JAIN K S, MORRIS L G T. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer[J]. Thyroid, 2015, 25(6): 681-687.
doi: 10.1089/thy.2015.0067 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd