China Oncology ›› 2023, Vol. 33 ›› Issue (1): 71-77.doi: 10.19401/j.cnki.1007-3639.2023.01.008
• Review • Previous Articles Next Articles
XUE Ying1,2(), MAO Yunyu1,2, XU Jianqing1,2,3(
)
Received:
2022-07-18
Revised:
2022-10-27
Online:
2023-01-30
Published:
2023-02-13
Contact:
XU Jianqing
Share article
CLC Number:
XUE Ying, MAO Yunyu, XU Jianqing. Progress in construction of hypoxia-sensitive CAR-T cell for solid tumor therapy[J]. China Oncology, 2023, 33(1): 71-77.
[1] |
ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075.
doi: 10.1016/S0140-6736(17)33326-3 |
[2] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[3] |
HAN X L, BRYSON P D, ZHAO Y F, et al. Masked chimeric antigen receptor for tumor-specific activation[J]. Mol Ther, 2017, 25(1): 274-284.
doi: S1525-0016(16)45366-9 pmid: 28129121 |
[4] | 赵玲娣, 高全立. CAR-T细胞在肿瘤治疗中的研究进展[J]. 中国肿瘤临床, 2015, 42(3): 190-194. |
ZHAO L D, GAO Q L. Research progress of CAR T-cell in tumor therapy[J]. Chin J Clin Oncol, 2015, 42(3): 190-194. | |
[5] | 荣斌, 吴纯启, 原野, 等. CAR-T细胞治疗产品及其非临床评价研究概述[J]. 中南药学, 2019, 17(9): 1381-1385. |
RONG B, WU C Q, YUAN Y, et al. Non-clinical evaluation of CAR-T cell therapy products[J]. Central South Pharm, 2019, 17(9): 1381-1385. | |
[6] |
SHKLOVSKAYA E, RIZOS H. MHC class Ⅰ deficiency in solid tumors and therapeutic strategies to overcome it[J]. Int J Mol Sci, 2021, 22(13): 6741.
doi: 10.3390/ijms22136741 |
[7] |
GARRIDO F, APTSIAURI N. Cancer immune escape: MHC expression in primary tumours versus metastases[J]. Immunology, 2019, 158(4): 255-266.
doi: 10.1111/imm.13114 pmid: 31509607 |
[8] | 常征, 陈学武, 王丽, 等. 嵌合抗原受体T细胞治疗恶性肿瘤的研究进展[J]. 药学研究, 2015, 34(9): 534-536. |
CHANG Z, CHEN X W, WANG L, et al. Research progress of chimeric antigen receptor modified T cells in malignant tumor[J]. J Pharm Res, 2015, 34(9): 534-536. | |
[9] |
LIM W A, JUNE C H. The principles of engineering immune cells to treat cancer[J]. Cell, 2017, 168(4): 724-740.
doi: S0092-8674(17)30064-8 pmid: 28187291 |
[10] |
JUNE C H, O’CONNOR R S, KAWALEKAR O U, et al. CAR-T cell immunotherapy for human cancer[J]. Science, 2018, 359(6382): 1361-1365.
doi: 10.1126/science.aar6711 |
[11] |
ZOU F, TAN J Z, LIU T, et al. The CD39 + HBV surface protein-targeted CAR-T and personalized tumor-reactive CD8 + T cells exhibit potent anti-HCC activity[J]. Mol Ther, 2021, 29(5): 1794-1807.
doi: 10.1016/j.ymthe.2021.01.021 |
[12] |
TANG X J, ZHOU Y, LI W J, et al. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo[J]. J Biomed Res, 2014, 28(6): 468-475.
doi: 10.7555/JBR.28.20140066 pmid: 25469116 |
[13] | 彭灿灿, 王惠明. CAR-T细胞治疗实体瘤的脱靶效应及优化方略[J]. 中国免疫学杂志, 2021, 37(22): 2754-2758. |
PENG C C, WANG H M. Off-target effect and optimization of CAR-T cell therapy in solid tumors[J]. Chin J Immunol, 2021, 37(22): 2754-2758. | |
[14] |
SCHUBERT M L, SCHMITT M, WANG L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy[J]. Ann Oncol, 2021, 32(1): 34-48.
doi: 10.1016/j.annonc.2020.10.478 pmid: 33098993 |
[15] |
WANG Z G, WU Z Q, LIU Y, et al. New development in CAR-T cell therapy[J]. J Hematol Oncol, 2017, 10(1): 53.
doi: 10.1186/s13045-017-0423-1 |
[16] |
QI C S, GONG J F, LI J, et al. Claudin18.2-specific CAR-T cells in gastrointestinal cancers: phase 1 trial interim results[J]. Nat Med, 2022, 28(6): 1189-1198.
doi: 10.1038/s41591-022-01800-8 |
[17] |
TCHOU J, ZHAO Y B, LEVINE B L, et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer[J]. Cancer Immunol Res, 2017, 5(12): 1152-1161.
doi: 10.1158/2326-6066.CIR-17-0189 pmid: 29109077 |
[18] |
XIAO Y, YU D H. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753.
doi: 10.1016/j.pharmthera.2020.107753 |
[19] |
LUO X, XU J, YU J H, et al. Shaping immune responses in the tumor microenvironment of ovarian cancer[J]. Front Immunol, 2021, 12: 692360.
doi: 10.3389/fimmu.2021.692360 |
[20] |
SATILMIS B, SAHIN T T, CICEK E, et al. Hepatocellular carcinoma tumor microenvironment and its implications in terms of anti-tumor immunity: future perspectives for new therapeutics[J]. J Gastrointest Canc, 2021, 52(4): 1198-1205.
doi: 10.1007/s12029-021-00725-8 |
[21] |
KUMARI S, ADVANI D, SHARMA S, et al. Combinatorial therapy in tumor microenvironment: where do we stand?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188585.
doi: 10.1016/j.bbcan.2021.188585 |
[22] |
PLUNDRICH D, CHIKHLADZE S, FICHTNER-FEIGL S, et al. Molecular mechanisms of tumor immunomodulation in the microenvironment of colorectal cancer[J]. Int J Mol Sci, 2022, 23(5): 2782.
doi: 10.3390/ijms23052782 |
[23] |
SIMSEK H, KLOTZSCH E. The solid tumor microenvironment-Breaking the barrier for T cells[J]. BioEssays, 2022, 44(6): 2100285.
doi: 10.1002/bies.202100285 |
[24] |
GOLIWAS K F, DESHANE J S, ELMETS C A, et al. Moving immune therapy forward targeting TME[J]. Physiol Rev, 2021, 101(2): 417-425.
doi: 10.1152/physrev.00008.2020 |
[25] | LI Y, ZHAO L, LI X F. Hypoxia and the tumor microenvironment[J]. Technol Cancer Res Treat, 2021, 20: 15330338211036304. |
[26] |
SINGH S R, RAMESHWAR P, SIEGEL P. Targeting tumor microenvironment in cancer therapy[J]. Cancer Lett, 2016, 380(1): 203-204.
doi: 10.1016/j.canlet.2016.04.009 pmid: 27060765 |
[27] |
BERAHOVICH R, LIU X H, ZHOU H, et al. Hypoxia selectively impairs CAR-T cells in vitro[J]. Cancers (Basel), 2019, 11(5): 602.
doi: 10.3390/cancers11050602 |
[28] |
SCHILIRO C, FIRESTEIN B L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation[J]. Cells, 2021, 10(5): 1056.
doi: 10.3390/cells10051056 |
[29] |
VAUPEL P, MULTHOFF G. Revisiting the Warburg effect: historical dogma versus current understanding[J]. J Physiol, 2021, 599(6): 1745-1757.
doi: 10.1113/JP278810 |
[30] |
WANG B, ZHAO Q, ZHANG Y Y, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy[J]. J Exp Clin Cancer Res, 2021, 40(1): 24.
doi: 10.1186/s13046-020-01820-7 |
[31] |
ALBADARI N, DENG S S, LI W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy[J]. Expert Opin Drug Discov, 2019, 14(7): 667-682.
doi: 10.1080/17460441.2019.1613370 |
[32] |
AL TAMEEMI W, DALE T P, AL-JUMAILY R M K, et al. Hypoxia-modified cancer cell metabolism[J]. Front Cell Dev Biol, 2019, 7: 4.
doi: 10.3389/fcell.2019.00004 pmid: 30761299 |
[33] |
FALLAH J, RINI B I. HIF inhibitors: status of current clinical development[J]. Curr Oncol Rep, 2019, 21(1): 6.
doi: 10.1007/s11912-019-0752-z pmid: 30671662 |
[34] |
COWMAN S J, KOH M Y. Revisiting the HIF switch in the tumor and its immune microenvironment[J]. Trends Cancer, 2022, 8(1): 28-42.
doi: 10.1016/j.trecan.2021.10.004 |
[35] |
LEE J W, BAE S H, JEONG J W, et al.Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions[J]. Exp Mol Med, 2004, 36(1): 1-12.
doi: 10.1038/emm.2004.1 |
[36] | 朱秀秀, 王玲, 沈俊杰, 等. 靶向PSCA的缺氧诱导型CAR-T的构建及体外效能研究[J]. 中国细胞生物学学报, 2019, 41(4): 636-644. |
ZHU X X, WANG L, SHEN J J, et al. Construction and in vitro potency investigation of hypoxia-inducible CAR-T targeting PSCA[J]. Chin J Cell Biol, 2019, 41(4): 636-644. | |
[37] |
LEE J W, KO J, JU C, et al. Hypoxia signaling in human diseases and therapeutic targets[J]. Exp Mol Med, 2019, 51(6): 1-13.
doi: 10.1038/s12276-019-0235-1 pmid: 31221962 |
[38] |
VITO A, EL-SAYES N, MOSSMAN K. Hypoxia-driven immune escape in the tumor microenvironment[J]. Cells, 2020, 9(4): 992.
doi: 10.3390/cells9040992 |
[39] |
KE Q D, COSTA M. Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
doi: 10.1124/mol.106.027029 pmid: 16887934 |
[40] |
CORRADO C, FONTANA S. Hypoxia and HIF signaling: one axis with divergent effects[J]. Int J Mol Sci, 2020, 21(16): 5611.
doi: 10.3390/ijms21165611 |
[41] |
JUILLERAT A, MARECHAL A, FILHOL J M, et al. An oxygen sensitive self-decision making engineered CAR T-cell[J]. Sci Rep, 2017, 7: 39833.
doi: 10.1038/srep39833 pmid: 28106050 |
[42] |
LIAO Q B, HE H, MAO Y Y, et al. Engineering T cells with hypoxia-inducible chimeric antigen receptor (HiCAR) for selective tumor killing[J]. Biomark Res, 2020, 8(1): 56.
doi: 10.1186/s40364-020-00238-9 pmid: 33292642 |
[43] | 陈文艳, 熊建萍. 肿瘤缺氧及其靶向治疗研究进展[J]. 国际肿瘤学杂志, 2006, 33(1): 8-11. |
CHEN W Y, XIONG J P. Research progress of tumor hypoxia and its targeted therapy[J]. J Int Oncol, 2006, 33(1): 8-11. | |
[44] | KOSTI P, OPZOOMER J W, LARIOS-MARTINEZ K I, et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors[J]. Cell Rep Med, 2021, 2(4): 100227. |
[45] |
BRANDT L J B, BARNKOB M B, MICHAELS Y S, et al. Emerging approaches for regulation and control of CAR T cells: a mini review[J]. Front Immunol, 2020, 11: 326.
doi: 10.3389/fimmu.2020.00326 pmid: 32194561 |
[46] |
LIIKANEN I, LAUHAN C, QUON S, et al. Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8 + T cells[J]. J Clin Invest, 2021, 131(7): e143729.
doi: 10.1172/JCI143729 |
[1] | WANG Zifei, DING Yahui, LI Yan, LUAN Xin, TANG Min. Application of 3D bioprinting in cancer research and tissue engineering [J]. China Oncology, 2024, 34(9): 814-826. |
[2] | WANG Manli, CHEN Hui, DUAN Zhi, XU Qimei, LI Zhen. A study on communication mechanism of lung cancer cells in tumor microenvironment mediated by pleckstrin-2/miR-196a signal axis [J]. China Oncology, 2024, 34(7): 628-638. |
[3] | WANG Xiaocong, LI Ming. The value of single-cell sequencing in oral squamous cell carcinoma research [J]. China Oncology, 2024, 34(5): 501-508. |
[4] | ZHENG Weitao, LI Hanluo, HU Kanghong. TCR-T immunotherapy for the treatment of solid tumor: current status, challenges and future prospects [J]. China Oncology, 2023, 33(7): 707-716. |
[5] | ZHANG Shaoqiu, YAN Li, LI Ruichen, ZHAO Yang, WANG Xiaoshen, YANG Xuguang, ZHU Yi. Recent advances and prospect in immune microenvironment and its mechanisms of function in head and neck squamous cell carcinoma [J]. China Oncology, 2023, 33(6): 629-636. |
[6] | LIU Qiang, FANG Yi, WANG Jing. Application progress of single-cell sequencing technology in breast cancer research [J]. China Oncology, 2022, 32(7): 635-642. |
[7] | SU Jiaqi, XU Wenhao, TIAN Xi, ANWAIE Aihetaimujiang, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. New strategies for combined with immunotherapy of clear cell renal cell carcinoma: advances in aerobic glycolysis [J]. China Oncology, 2022, 32(4): 287-297. |
[8] | ZHOU Shukui, ZHANG Dongliang, WANG Xiang, LIU Lei, LI Zeng, YANG Shengke, LIAO Hong. Developing a new animal model of subcutaneous transplanted prostate cancer with cell sheet technology [J]. China Oncology, 2022, 32(3): 200-206. |
[9] | LI Wei, ZHANG Shanling, TAO Yingjie, WANG Xudong. Research status and progress of mechanism of T cell immune metabolism and its application combined with immune checkpoint inhibitor [J]. China Oncology, 2021, 31(7): 640-646. |
[10] | ZHANG Jian , SHEN Weina , JI Dongmei , WANG Leiping , GONG Chengcheng , HU Xichun . FUSCC criteria for the management of targeted drug-induced interstitial lung disease in solid tumors [J]. China Oncology, 2021, 31(4): 241-249. |
[11] | HAN Xiangchen, LI Xiaoguang, HU Xin. Single-cell RNA sequencing and its application in breast cancer [J]. China Oncology, 2021, 31(11): 1110-1114. |
[12] | JIANG Mengyi , LU Yanqiao , WANG Hongxia . Research progress and clinical significance of breast cancer heterogeneity [J]. China Oncology, 2020, 30(5): 394-400. |
[13] | FAN Shouren , WU Shuhua , LI Yangyang , XU Xiaoyang , HE Shuang , WEN Feifei , LIU Liu , GUO Ningjie , JIA Zhenzhen . The correlation between LC3 and tumor-associated macrophages in colorectal cancer and its clinical significance [J]. China Oncology, 2020, 30(11): 849-857. |
[14] | JIN Yujuan, HU Liang, JI Hongbin. Advances in molecular mechanism of lung cancer: from rational to practice [J]. China Oncology, 2020, 30(10): 759-769. |
[15] | FANG Yujia, ZHOU Juan, SU Chunxia. Immune microenvironment for liver metastasis of non-small cell lung cancer and future intervention strategies [J]. China Oncology, 2020, 30(10): 750-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd