China Oncology ›› 2024, Vol. 34 ›› Issue (7): 628-638.doi: 10.19401/j.cnki.1007-3639.2024.07.002

• Article • Previous Articles     Next Articles

A study on communication mechanism of lung cancer cells in tumor microenvironment mediated by pleckstrin-2/miR-196a signal axis

WANG Manli(), CHEN Hui(), DUAN Zhi, XU Qimei, LI Zhen   

  1. Department of Pathology, First Hospital of Changsha City (Changsha Hospital, Xiangya School of Medicine, Central South University), Changsha 410005, Hunan Province, China
  • Received:2023-11-17 Revised:2024-02-27 Online:2024-07-30 Published:2024-08-08
  • Contact: CHEN Hui

Abstract:

Background and purpose: It is still a great challenge to clarify the signal molecules that mediate the communication between cancer-associated fibroblasts (CAFs) and tumor cells. These signal molecules are very important for cancer metastasis. The purpose of this study was to explore the communication mechanism of pleckstrin-2/miR-196a signal axis mediated by lung cancer cells in tumor microenvironment. Methods: Human lung adenocarcinoma cell line H1299 and human embryonic lung cell MRC-5 were selected as the research objects. H1299 cells were transfected with lentivirus (PLEK2) expressing PLEK2 and Vector control, and exosomes (Vector_exo, PLEK2_exo) were isolated after 24 h of transfection. MRC-5 cells were transfected with miR-196a mimetic or inhibitor. The expressions of PLEK2 and epithelial-mesenchymal transition (EMT)-related proteins were analyzed by Western blot. The expression of miR-196a was analyzed by polymerase chain reaction (PCR), and the metastasis and invasion ability of cells were determined by transwell assay. Six female BALB/c-nu mice were randomly divided into Vector group and PLEK2 group, with 3 mice in each group. Mice in each group were injected with H1299 cells transfected with Vector or PLEK2 through the tail vein. After 4 weeks, lung tissue was taken out for H-E staining and immunohistochemical staining to analyze the expression of α-smooth muscle actin (α-SMA). All animal experiments were approved by the ethics committee of First Hospital of Changsha City (Changsha Hospital, Xiangya School of Medicine, Central South University) (ethics number: EI-2021-103). Results: Compared with the Vector group, the number of pulmonary metastatic nodules and the expression of α-SMA in metastatic cancer in PLEK2 group increased significantly (P<0.001). Compared with Vector group, the expression level of miR-196a in H1229 cells in PLEK2 group increased significantly (P<0.05), and the expression level of miR-196a was significantly higher in PLEK2_exo than in Vector_exo (P<0.05). Compared with Vector_exo group, the expression levels of miR-196a, α-SMA and fibroblast activation protein (FAP) in MRC-5 cells in PLEK2_exo group increased significantly (P<0.05). Compared with the negative control (NC), the expression levels of α-SMA and FAP in MRC-5 cells transfected with miR-196a increased significantly (P<0.05). On the contrary, by transfection with miR-196a inhibitors (si-miR-196a#1 and si-miR-196a#), the expression levels of α-SMA and FAP were significantly inhibited (P<0.05). Compared with NC-CM group, the number of metastatic cells, invasive cells and the expression of vimentin in miR-196a-CM group increased significantly (P<0.001), and the expression of E-cadherin decreased significantly (P<0.001). In addition, compared with Vector_exo-CM group, PLEK2_exo-CM group had significant increase in number of metastatic and invasive cells and the expression of vimentin (P<0.01), and significant decrease in the expression of E-cadherin (P<0.001). Conclusion: Upregulation of PLEK2 can enhance the level of exosomes miR-196a derived from lung cancer cells, thereby promoting the activation of CAFs. The activated CAFs can further enhance the invasive ability of lung cancer cells.

Key words: Pleckstrin-2, Tumor microenvironment, Lung cancer cells, Cancer-associated fibroblasts

CLC Number: