China Oncology ›› 2024, Vol. 34 ›› Issue (5): 501-508.doi: 10.19401/j.cnki.1007-3639.2024.05.007
• Review • Previous Articles Next Articles
WANG Xiaocong1,2(), LI Ming1,2(
)
Received:
2024-01-18
Revised:
2024-03-28
Online:
2024-05-30
Published:
2024-06-07
Contact:
LI Ming
Share article
CLC Number:
WANG Xiaocong, LI Ming. The value of single-cell sequencing in oral squamous cell carcinoma research[J]. China Oncology, 2024, 34(5): 501-508.
[1] | ONG Y L R, TIVEY D, HUANG L, et al. Factors affecting surgical mortality of oral squamous cell carcinoma resection[J]. Int J Oral Maxillofac Surg, 2021, 50(1): 1-6. |
[2] | HOWARD A, AGRAWAL N, GOOI Z. Lip and oral cavity squamous cell carcinoma[J]. Hematol Oncol Clin North Am, 2021, 35(5): 895-911. |
[3] |
MROZ E A, TWARD A D, PICKERING C R, et al. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma[J]. Cancer, 2013, 119(16): 3034-3042.
doi: 10.1002/cncr.28150 pmid: 23696076 |
[4] |
BOXBERG M, LEISING L, STEIGER K, et al. Composition and clinical impact of the immunologic tumor microenvironment in oral squamous cell carcinoma[J]. J Immunol, 2019, 202(1): 278-291.
doi: 10.4049/jimmunol.1800242 pmid: 30530592 |
[5] | CANCER GENOME ATLAS NETWORK. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576-582. |
[6] |
STRANSKY N, EGLOFF A M, TWARD A D, et al. The mutational landscape of head and neck squamous cell carcinoma[J]. Science, 2011, 333(6046): 1157-1160.
doi: 10.1126/science.1208130 pmid: 21798893 |
[7] | RIVERA C. Essentials of oral cancer[J]. Int J Clin Exp Pathol, 2015, 8(9): 11884-11894. |
[8] | REN X W, KANG B X, ZHANG Z M. Understanding tumor ecosystems by single-cell sequencing: promises and limitations[J]. Genome Biol, 2018, 19(1): 211. |
[9] | HAQUE A, ENGEL J, TEICHMANN S A, et al. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications[J]. Genome Med, 2017, 9(1): 75. |
[10] |
LEE M N, HWANG H S, OH S H, et al. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression[J]. Exp Mol Med, 2018, 50(11): 1-16.
doi: 10.1038/s12276-018-0170-6 pmid: 30393382 |
[11] | YAMADA S, NOMURA S. Review of single-cell RNA sequencing in the heart[J]. Int J Mol Sci, 2020, 21(21): 8345. |
[12] |
GAO C X, ZHANG M N, CHEN L. The comparison of two single-cell sequencing platforms: BD rhapsody and 10x genomics chromium[J]. Curr Genomics, 2020, 21(8): 602-609.
doi: 10.2174/1389202921999200625220812 pmid: 33414681 |
[13] |
TANG F C, BARBACIORU C, WANG Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
doi: 10.1038/nmeth.1315 pmid: 19349980 |
[14] |
MACOSKO E Z, BASU A, SATIJA R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[15] |
JAITIN D A, KENIGSBERG E, KEREN-SHAUL H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172): 776-779.
doi: 10.1126/science.1247651 pmid: 24531970 |
[16] |
BRANTON D, DEAMER D W, MARZIALI A, et al. The potential and challenges of nanopore sequencing[J]. Nat Biotechnol, 2008, 26(10): 1146-1153.
doi: 10.1038/nbt.1495 pmid: 18846088 |
[17] | RHOADS A, AU K F. PacBio sequencing and its applications[J]. Genomics Proteomics Bioinformatics, 2015, 13(5): 278-289. |
[18] | GUPTA I, COLLIER P G, HAASE B, et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells[J]. Nat Biotechnol, 2018.[Online ahead of print] |
[19] | LEBRIGAND K, MAGNONE V, BARBRY P, et al. High throughput error corrected Nanopore single cell transcriptome sequencing[J]. Nat Commun, 2020, 11(1): 4025. |
[20] |
BYRNE A, BEAUDIN A E, OLSEN H E, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells[J]. Nat Commun, 2017, 8: 16027.
doi: 10.1038/ncomms16027 pmid: 28722025 |
[21] |
PICELLI S, BJÖRKLUND Å K, FARIDANI O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[22] | HAGEMANN-JENSEN M, ZIEGENHAIN C, CHEN P, et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3[J]. Nat Biotechnol, 2020, 38(6): 708-714. |
[23] | FAN X Y, YANG C, LI W, et al. SMOOTH-seq: single-cell genome sequencing of human cells on a third-generation sequencing platform[J]. Genome Biol, 2021, 22(1): 195. |
[24] |
PURAM S V, TIROSH I, PARIKH A S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer[J]. Cell, 2017, 171(7): 1611-1624.e24.
doi: S0092-8674(17)31270-9 pmid: 29198524 |
[25] |
TIROSH I, IZAR B, PRAKADAN S M, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq[J]. Science, 2016, 352(6282): 189-196.
doi: 10.1126/science.aad0501 pmid: 27124452 |
[26] |
DARMANIS S, SLOAN S A, CROOTE D, et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma[J]. Cell Rep, 2017, 21(5): 1399-1410.
doi: S2211-1247(17)31462-6 pmid: 29091775 |
[27] |
AZIZI E, CARR A J, PLITAS G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment[J]. Cell, 2018, 174(5): 1293-1308.e36.
doi: S0092-8674(18)30723-2 pmid: 29961579 |
[28] |
GUO X Y, ZHANG Y Y, ZHENG L T, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing[J]. Nat Med, 2018, 24(7): 978-985.
doi: 10.1038/s41591-018-0045-3 pmid: 29942094 |
[29] |
BELLI C, TRAPANI D, VIALE G, et al. Targeting the microenvironment in solid tumors[J]. Cancer Treat Rev, 2018, 65: 22-32.
doi: S0305-7372(18)30014-8 pmid: 29502037 |
[30] |
WEVER O D, DEMETTER P, MAREEL M, et al. Stromal myofibroblasts are drivers of invasive cancer growth[J]. Int J Cancer, 2008, 123(10): 2229-2238.
doi: 10.1002/ijc.23925 pmid: 18777559 |
[31] | MARSH D, SUCHAK K, MOUTASIM K A, et al. Stromal features are predictive of disease mortality in oral cancer patients[J]. J Pathol, 2011, 223(4): 470-481. |
[32] | GASCARD P, TLSTY T D. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy[J]. Genes Dev, 2016, 30(9): 1002-1019. |
[33] | KUZET S E, GAGGIOLI C. Fibroblast activation in cancer: when seed fertilizes soil[J]. Cell Tissue Res, 2016, 365(3): 607-619. |
[34] |
LI H P, COURTOIS E T, SENGUPTA D, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors[J]. Nat Genet, 2017, 49(5): 708-718.
doi: 10.1038/ng.3818 pmid: 28319088 |
[35] | QI Z T, BARRETT T, PARIKH A S, et al. Single-cell sequencing and its applications in head and neck cancer[J]. Oral Oncol, 2019, 99: 104441. |
[36] | RAMAZZOTTI D, ANGARONI F, MASPERO D, et al. Variant calling from scRNA-seq data allows the assessment of cellular identity in patient-derived cell lines[J]. Nat Commun, 2022, 13(1): 2718. |
[37] |
HARA T, TANEGASHIMA K. Pleiotropic functions of the CXC-type chemokine CXCL14 in mammals[J]. J Biochem, 2012, 151(5): 469-476.
doi: 10.1093/jb/mvs030 pmid: 22437940 |
[38] | SJÖBERG E, AUGSTEN M, BERGH J, et al. Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer[J]. Br J Cancer, 2016, 114(10): 1117-1124. |
[39] |
LIN K Z, ZOU R M, LIN F, et al. Expression and effect of CXCL14 in colorectal carcinoma[J]. Mol Med Rep, 2014, 10(3): 1561-1568.
doi: 10.3892/mmr.2014.2343 pmid: 24938992 |
[40] |
NAKAYAMA R, ARIKAWA K, BHAWAL U K. The epigenetic regulation of CXCL14 plays a role in the pathobiology of oral cancers[J]. J Cancer, 2017, 8(15): 3014-3027.
doi: 10.7150/jca.21169 pmid: 28928893 |
[41] | OZAWA S, KATO Y, KOMORI R, et al. BRAK/CXCL14 expression suppresses tumor growth in vivo in human oral carcinoma cells[J]. Biochem Biophys Res Commun, 2006, 348(2): 406-412. |
[42] | WESTRICH J A, VERMEER D W, SILVA A, et al. CXCL14 suppresses human papillomavirus-associated head and neck cancer through antigen-specific CD8+ T-cell responses by upregulating MHC-I expression[J]. Oncogene, 2019, 38(46): 7166-7180. |
[43] | PARIKH A, SHIN J, FAQUIN W, et al. Malignant cell-specific CXCL14 promotes tumor lymphocyte infiltration in oral cavity squamous cell carcinoma[J]. J Immunother Cancer, 2020, 8(2): e001048. |
[44] | KONDO T, OZAWA S, IKOMA T, et al. Expression of the chemokine CXCL14 and cetuximab-dependent tumour suppression in head and neck squamous cell carcinoma[J]. Oncogenesis, 2016, 5(7): e240. |
[45] | EYQUEM J, MANSILLA-SOTO J, GIAVRIDIS T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643): 113-117. |
[46] | WALDMAN A D, FRITZ J M, LENARDO M J. A guide to cancer immunotherapy: from T cell basic science to clinical practice[J]. Nat Rev Immunol, 2020, 20(11): 651-668. |
[47] |
BURTNESS B, HARRINGTON K J, GREIL R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study[J]. Lancet, 2019, 394(10212): 1915-1928.
doi: S0140-6736(19)32591-7 pmid: 31679945 |
[48] | HARRINGTON K J, BURTNESS B, GREIL R, et al. Pembrolizumab with or without chemotherapy in recurrent or metastatic head and neck squamous cell carcinoma: updated results of the phase III KEYNOTE-048 study[J]. J Clin Oncol, 2023, 41(4): 790-802. |
[49] |
CHEN J T, YANG J F, LI H, et al. Single-cell transcriptomics reveal the intratumoral landscape of infiltrated T-cell subpopulations in oral squamous cell carcinoma[J]. Mol Oncol, 2021, 15(4): 866-886.
doi: 10.1002/1878-0261.12910 pmid: 33513276 |
[50] | TOGASHI Y, SHITARA K, NISHIKAWA H. Regulatory T cells in cancer immunosuppression-implications for anticancer therapy[J]. Nat Rev Clin Oncol, 2019, 16(6): 356-371. |
[51] | BELTRA J C, MANNE S, ABDEL-HAKEEM M S, et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms[J]. Immunity, 2020, 52(5): 825-841.e8. |
[52] | IM S J, HASHIMOTO M, GERNER M Y, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy[J]. Nature, 2016, 537(7620): 417-421. |
[53] | HUDSON W H, GENSHEIMER J, HASHIMOTO M, et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection[J]. Immunity, 2019, 51(6): 1043-1058.e4. |
[54] | ZEHN D, THIMME R, LUGLI E, et al. ‘Stem-like’ precursors are the fount to sustain persistent CD8+ T cell responses[J]. Nat Immunol, 2022, 23(6): 836-847. |
[55] | RAHIM M K, OKHOLM T L H, JONES K B, et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes[J]. Cell, 2023, 186(6): 1127-1143.e18. |
[56] |
RAGHU D, XUE H H, MIELKE L A. Control of lymphocyte fate, infection, and tumor immunity by TCF-1[J]. Trends Immunol, 2019, 40(12): 1149-1162.
doi: S1471-4906(19)30215-7 pmid: 31734149 |
[57] | PENG Y, XIAO L P, RONG H X, et al. Single-cell profiling of tumor-infiltrating TCF1/TCF7+ T cells reveals a T lymphocyte subset associated with tertiary lymphoid structures/organs and a superior prognosis in oral cancer[J]. Oral Oncol, 2021, 119: 105348. |
[58] | HUYNH N C, HUANG T T, NGUYEN C T, et al. Comprehensive integrated single-cell whole transcriptome analysis revealed the p-EMT tumor cells-CAFs communication in oral squamous cell carcinoma[J]. Int J Mol Sci, 2022, 23(12): 6470. |
[59] | YOSHITOMI H, UENO H. Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases[J]. Cell Mol Immunol, 2021, 18(3): 523-527. |
[60] | GU-TRANTIEN C, MIGLIORI E, BUISSERET L, et al. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer[J]. JCI Insight, 2017, 2(11): e91487. |
[1] | WANG Zifei, DING Yahui, LI Yan, LUAN Xin, TANG Min. Application of 3D bioprinting in cancer research and tissue engineering [J]. China Oncology, 2024, 34(9): 814-826. |
[2] | WANG Manli, CHEN Hui, DUAN Zhi, XU Qimei, LI Zhen. A study on communication mechanism of lung cancer cells in tumor microenvironment mediated by pleckstrin-2/miR-196a signal axis [J]. China Oncology, 2024, 34(7): 628-638. |
[3] | SUN Rongqi, SONG Ning, ZHENG Wentian, ZHANG Xinyue, LI Minmin, GONG Hui, JIANG Yingying. Effect of long noncoding RNA FLJ30679 on proliferation and migration of oral squamous cell carcinoma cells [J]. China Oncology, 2024, 34(5): 439-450. |
[4] | JIN Yizi, LIN Mingxi, ZHANG Jian. Receptor discordance between primary breast cancer and liver metastases [J]. China Oncology, 2023, 33(9): 834-843. |
[5] | ZHANG Shaoqiu, YAN Li, LI Ruichen, ZHAO Yang, WANG Xiaoshen, YANG Xuguang, ZHU Yi. Recent advances and prospect in immune microenvironment and its mechanisms of function in head and neck squamous cell carcinoma [J]. China Oncology, 2023, 33(6): 629-636. |
[6] | WANG Xiaoxiao, CHEN Xi, LI Minmin, SONG Ning, SUN Dongyuan, JIANG Yingying. Effects of NOL8 on cell proliferation, migration and invasion of oral squamous cell carcinoma [J]. China Oncology, 2023, 33(1): 45-53. |
[7] | XUE Ying, MAO Yunyu, XU Jianqing. Progress in construction of hypoxia-sensitive CAR-T cell for solid tumor therapy [J]. China Oncology, 2023, 33(1): 71-77. |
[8] | LIU Qiang, FANG Yi, WANG Jing. Application progress of single-cell sequencing technology in breast cancer research [J]. China Oncology, 2022, 32(7): 635-642. |
[9] | SU Jiaqi, XU Wenhao, TIAN Xi, ANWAIE Aihetaimujiang, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. New strategies for combined with immunotherapy of clear cell renal cell carcinoma: advances in aerobic glycolysis [J]. China Oncology, 2022, 32(4): 287-297. |
[10] | ZHOU Shukui, ZHANG Dongliang, WANG Xiang, LIU Lei, LI Zeng, YANG Shengke, LIAO Hong. Developing a new animal model of subcutaneous transplanted prostate cancer with cell sheet technology [J]. China Oncology, 2022, 32(3): 200-206. |
[11] | LI Wei, ZHANG Shanling, TAO Yingjie, WANG Xudong. Research status and progress of mechanism of T cell immune metabolism and its application combined with immune checkpoint inhibitor [J]. China Oncology, 2021, 31(7): 640-646. |
[12] | HU Xi’e , YANG Zhenyu , XUE Jingyi , YANG Ping , PENG Shujia , YUAN Lijuan , BAO Guoqiang . Research progress of single-cell sequencing in neoadjuvant chemotherapy for triple-negative breast cancer [J]. China Oncology, 2021, 31(3): 221-226. |
[13] | HAN Xiangchen, LI Xiaoguang, HU Xin. Single-cell RNA sequencing and its application in breast cancer [J]. China Oncology, 2021, 31(11): 1110-1114. |
[14] | JIANG Mengyi , LU Yanqiao , WANG Hongxia . Research progress and clinical significance of breast cancer heterogeneity [J]. China Oncology, 2020, 30(5): 394-400. |
[15] | FAN Shouren , WU Shuhua , LI Yangyang , XU Xiaoyang , HE Shuang , WEN Feifei , LIU Liu , GUO Ningjie , JIA Zhenzhen . The correlation between LC3 and tumor-associated macrophages in colorectal cancer and its clinical significance [J]. China Oncology, 2020, 30(11): 849-857. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd