China Oncology ›› 2023, Vol. 33 ›› Issue (2): 95-102.doi: 10.19401/j.cnki.1007-3639.2023.02.001
• Specialists' Commentary • Previous Articles Next Articles
WANG Ziyu(), XIAO Yi, JIANG Yizhou, SHAO Zhimin(
)
Received:
2023-01-08
Revised:
2023-01-24
Online:
2023-02-28
Published:
2023-03-22
Contact:
SHAO Zhimin
Share article
CLC Number:
WANG Ziyu, XIAO Yi, JIANG Yizhou, SHAO Zhimin. Advances in fundamental and translational breast cancer research in 2022[J]. China Oncology, 2023, 33(2): 95-102.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
JIANG H M, WEI H M, WANG H, et al. Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer[J]. Cell Death Dis, 2022, 13(3): 206.
doi: 10.1038/s41419-022-04632-z pmid: 35246504 |
[3] |
ZHU W J, CHEN X, GUO X Y, et al. Low glucose-induced overexpression of HOXC-AS3 promotes metabolic reprogramming of breast cancer[J]. Cancer Res, 2022, 82(5): 805-818.
doi: 10.1158/0008-5472.CAN-21-1179 pmid: 35031573 |
[4] |
CHEN X M, LUO R, ZHANG Y M, et al. Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer[J]. Nat Commun, 2022, 13(1): 7160.
doi: 10.1038/s41467-022-34702-x pmid: 36418319 |
[5] |
PARIDA P K, MARQUEZ-PALENCIA M, NAIR V, et al. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness[J]. Cell Metab, 2022, 34(1): 90-105.e7.
doi: 10.1016/j.cmet.2021.12.001 pmid: 34986341 |
[6] |
GOMES A P, ILTER D, LOW V, et al. Altered propionate metabolism contributes to tumour progression and aggressiveness[J]. Nat Metab, 2022, 4(4): 435-443.
doi: 10.1038/s42255-022-00553-5 pmid: 35361954 |
[7] |
GONG Z, LI Q, SHI J Y, et al. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells[J]. Cell Metab, 2022, 34(12): 1960-1976.e9.
doi: 10.1016/j.cmet.2022.11.003 pmid: 36476935 |
[8] |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[9] |
TANG D L, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125.
doi: 10.1038/s41422-020-00441-1 pmid: 33268902 |
[10] |
LI H Y, YANG P H, WANG J H, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk[J]. J Hematol Oncol, 2022, 15(1): 2.
doi: 10.1186/s13045-021-01223-x |
[11] |
WU M M, ZHANG X, ZHANG W J, et al. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis[J]. Nat Commun, 2022, 13(1): 1371.
doi: 10.1038/s41467-022-29018-9 pmid: 35296660 |
[12] |
ZOU Y T, ZHENG S Q, XIE X H, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer[J]. Nat Commun, 2022, 13(1): 2672.
doi: 10.1038/s41467-022-30217-7 pmid: 35562334 |
[13] |
YANG F, XIAO Y, DING J H, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J]. Cell Metab, 2023, 35(1): 84-100.e8.
doi: 10.1016/j.cmet.2022.09.021 |
[14] |
ZHANG H L, HU B X, LI Z L, et al. PKCβⅡ phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis[J]. Nat Cell Biol, 2022, 24(1): 88-98.
doi: 10.1038/s41556-021-00818-3 |
[15] |
XIE Y Z, WANG B Y, ZHAO Y N, et al. Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis[J]. J Hematol Oncol, 2022, 15(1): 72.
doi: 10.1186/s13045-022-01297-1 |
[16] |
LI K, LIN C C, LI M H, et al. Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy[J]. ACS Nano, 2022, 16(2): 2381-2398.
doi: 10.1021/acsnano.1c08664 pmid: 35041395 |
[17] | YANG J, JIA Z G, ZHANG J, et al. Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance[J]. Adv Healthc Mater, 2022, 11(13): e2102799. |
[18] |
PAN W L, TAN Y, MENG W, et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework[J]. Biomaterials, 2022, 283: 121449.
doi: 10.1016/j.biomaterials.2022.121449 |
[19] | ZHOU A W, FANG T L, CHEN K R, et al. Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer[J]. Small, 2022, 18(12): e2106568. |
[20] |
SEUNG E, XING Z, WU L, et al. A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells[J]. Nature, 2022, 603(7900): 328-334.
doi: 10.1038/s41586-022-04439-0 |
[21] |
NALIO RAMOS R, MISSOLO-KOUSSOU Y, GERBER-FERDER Y, et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer[J]. Cell, 2022, 185(7): 1189-1207.e25.
doi: 10.1016/j.cell.2022.02.021 |
[22] |
NIXON B G, KUO F S, JI L L, et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer[J]. Immunity, 2022, 55(11): 2044-2058.e5.
doi: 10.1016/j.immuni.2022.10.002 |
[23] |
BLOMBERG O S, SPAGNUOLO L, GARNER H, et al. IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer[J]. Cancer Cell, 2023, 41(1): 106-123.e10.
doi: 10.1016/j.ccell.2022.11.014 |
[24] |
KAY E J, PATERSON K, RIERA-DOMINGO C, et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix[J]. Nat Metab, 2022, 4(6): 693-710.
doi: 10.1038/s42255-022-00582-0 pmid: 35760868 |
[25] |
PAPANICOLAOU M, PARKER A L, YAM M, et al. Temporal profiling of the breast tumour microenvironment reveals collagen Ⅻ as a driver of metastasis[J]. Nat Commun, 2022, 13(1): 4587.
doi: 10.1038/s41467-022-32255-7 |
[26] |
HONGU T, PEIN M, INSUA-RODRÍGUEZ J, et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs[J]. Nat Cancer, 2022, 3(4): 486-504.
doi: 10.1038/s43018-022-00353-6 |
[27] |
ZHU Q Z, ZHU Y, HEPLER C, et al. Adipocyte mesenchymal transition contributes to mammary tumor progression[J]. Cell Rep, 2022, 40(11): 111362.
doi: 10.1016/j.celrep.2022.111362 |
[28] | WANG Y Q, XIE H L, WU Y, et al. Bioinspired lipoproteins of furoxans-oxaliplatin remodel physical barriers in tumor to potentiate T-cell infiltration[J]. Adv Mater, 2022, 34(14): e2110614. |
[29] |
NIA H T, MUNN L L, JAIN R K. Physical traits of cancer[J]. Science, 2020, 370(6516): eaaz0868.
doi: 10.1126/science.aaz0868 |
[30] |
BERA K, KIEPAS A, GODET I, et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination[J]. Nature, 2022, 611(7935): 365-373.
doi: 10.1038/s41586-022-05394-6 |
[31] |
ROMANI P, NIRCHIO N, ARBOIT M, et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance[J]. Nat Cell Biol, 2022, 24(2): 168-180.
doi: 10.1038/s41556-022-00843-w pmid: 35165418 |
[32] |
HANAHAN D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46.
doi: 10.1158/2159-8290.CD-21-1059 pmid: 35022204 |
[33] |
HIEKEN T J, CHEN J, HOSKIN T L, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease[J]. Sci Rep, 2016, 6: 30751.
doi: 10.1038/srep30751 pmid: 27485780 |
[34] |
NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980.
doi: 10.1126/science.aay9189 pmid: 32467386 |
[35] |
WANG H, RONG X Y, ZHAO G, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer[J]. Cell Metab, 2022, 34(4): 581-594.e8.
doi: 10.1016/j.cmet.2022.02.010 pmid: 35278352 |
[36] |
FU A K, YAO B Q, DONG T T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185(8): 1356-1372.e26.
doi: 10.1016/j.cell.2022.02.027 pmid: 35395179 |
[37] |
DENG H, MUTHUPALANI S, ERDMAN S, et al. Translocation of helicobacter hepaticus synergizes with myeloid-derived suppressor cells and contributes to breast carcinogenesis[J]. Oncoimmunology, 2022, 11(1): 2057399.
doi: 10.1080/2162402X.2022.2057399 |
[38] |
NARUNSKY-HAZIZA L, SEPICH-POORE G D, LIVYATAN I, et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions[J]. Cell, 2022, 185(20): 3789-3806.e17.
doi: 10.1016/j.cell.2022.09.005 |
[39] |
DOHLMAN A B, KLUG J, MESKO M, et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors[J]. Cell, 2022, 185(20): 3807-3822.e12.
doi: 10.1016/j.cell.2022.09.015 pmid: 36179671 |
[40] |
XIAO S S, SHI H, ZHANG Y, et al. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer[J]. J Nanobiotechnol, 2022, 20(1): 178.
doi: 10.1186/s12951-022-01373-1 pmid: 35366890 |
[41] |
NGUYEN B, FONG C, LUTHRA A, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25, 000 patients[J]. Cell, 2022, 185(3): 563-575.e11.
doi: 10.1016/j.cell.2022.01.003 |
[42] | GARCIA-RECIO S, HINOUE T, WHEELER G L, et al. Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis[J]. Nat Cancer, 2022[Epub ahead of print]. |
[43] |
GONG Z, LI Q, SHI J Y, et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment[J]. Immunity, 2022, 55(8): 1483-1500.e9.
doi: 10.1016/j.immuni.2022.07.001 pmid: 35908547 |
[44] |
QI M Y, XIA Y, WU Y J, et al. Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression[J]. Nat Commun, 2022, 13(1): 897.
doi: 10.1038/s41467-022-28438-x pmid: 35173168 |
[45] |
GUTWILLIG A, SANTANA-MAGAL N, FARHAT-YOUNIS L, et al. Transient cell-in-cell formation underlies tumor relapse and resistance to immunotherapy[J]. Elife, 2022, 11: e80315.
doi: 10.7554/eLife.80315 |
[46] |
BALDOMINOS P, BARBERA-MOURELLE A, BARREIRO O, et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche[J]. Cell, 2022, 185(10): 1694-1708.e19.
doi: 10.1016/j.cell.2022.03.033 |
[47] |
CHANG C A, JEN J, JIANG S W, et al. Ontogeny and vulnerabilities of drug-tolerant persisters in HER2+ breast cancer[J]. Cancer Discov, 2022, 12(4): 1022-1045.
doi: 10.1158/2159-8290.CD-20-1265 |
[48] |
MARSOLIER J, PROMPSY P, DURAND A, et al. H3K27me3 conditions chemotolerance in triple-negative breast cancer[J]. Nat Genet, 2022, 54(4): 459-468.
doi: 10.1038/s41588-022-01047-6 pmid: 35410383 |
[49] |
LIU X W, LU Y W, HUANG J Y, et al. CD16+ fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition[J]. Cancer Cell, 2022, 40(11): 1341-1357.e13.
doi: 10.1016/j.ccell.2022.10.015 |
[50] |
LI H Z, XIAO Y, LI Q, et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1[J]. Cancer Cell, 2022, 40(1): 36-52.e9.
doi: 10.1016/j.ccell.2021.11.002 |
[51] |
MA S J, ZHAO Y, LEE W C, et al. Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple-negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy[J]. Nat Commun, 2022, 13(1): 4118.
doi: 10.1038/s41467-022-31764-9 |
[52] |
JAAKS P, COKER E A, VIS D J, et al. Effective drug combinations in breast, colon and pancreatic cancer cells[J]. Nature, 2022, 603(7899): 166-173.
doi: 10.1038/s41586-022-04437-2 |
[53] |
GUILLEN K P, FUJITA M, BUTTERFIELD A J, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology[J]. Nat Cancer, 2022, 3(2): 232-250.
doi: 10.1038/s43018-022-00337-6 |
[54] |
JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3): 428-440.e5.
doi: 10.1016/j.ccell.2019.02.001 |
[55] |
BERTUCCI F, NG C K Y, PATSOURIS A, et al. Genomic characterization of metastatic breast cancers[J]. Nature, 2019, 569(7757): 560-564.
doi: 10.1038/s41586-019-1056-z |
[56] |
MERTINS P, MANI D R, RUGGLES K V, et al. Proteogenomics connects somatic mutations to signalling in breast cancer[J]. Nature, 2016, 534(7605): 55-62.
doi: 10.1038/nature18003 |
[57] |
CURTIS C, SHAH S P, CHIN S F, et al. The genomic and transcriptomic architecture of 2 000 breast tumours reveals novel subgroups[J]. Nature, 2012, 486(7403): 346-352.
doi: 10.1038/nature10983 |
[58] |
PEREIRA B, CHIN S F, RUEDA O M, et al. Erratum: the somatic mutation profiles of 2, 433 breast cancers refine their genomic and transcriptomic landscapes[J]. Nat Commun, 2016, 7: 11908.
doi: 10.1038/ncomms11908 |
[59] |
BARECHE Y, VENET D, IGNATIADIS M, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis[J]. Ann Oncol, 2018, 29(4): 895-902.
doi: S0923-7534(19)45470-7 pmid: 29365031 |
[60] |
XIAO Y, MA D, YANG Y S, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer[J]. Cell Res, 2022, 32(5): 477-490.
doi: 10.1038/s41422-022-00614-0 pmid: 35105939 |
[61] | JIANG L, YOU C, XIAO Y, et al. Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer[J]. Cell Rep Med, 2022, 3(7): 100694. |
[62] |
LOMAKIN A, SVEDLUND J, STRELL C, et al. Spatial genomics maps the structure, nature and evolution of cancer clones[J]. Nature, 2022, 611(7936): 594-602.
doi: 10.1038/s41586-022-05425-2 |
[63] |
FUNNELL T, O'FLANAGAN C H, WILLIAMS M J, et al. Single-cell genomic variation induced by mutational processes in cancer[J]. Nature, 2022, 612(7938): 106-115.
doi: 10.1038/s41586-022-05249-0 |
[64] |
MARTINI R, DELPE P, CHU T R, et al. African ancestry-associated gene expression profiles in triple-negative breast cancer underlie altered tumor biology and clinical outcome in women of African descent[J]. Cancer Discov, 2022, 12(11): 2530-2551.
doi: 10.1158/2159-8290.CD-22-0138 |
[65] |
STRAND S H, RIVERO-GUTIÉRREZ B, HOULAHAN K E, et al. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts[J]. Cancer Cell, 2022, 40(12): 1521-1536.e7.
doi: 10.1016/j.ccell.2022.10.021 |
[66] |
LIPS E H, KUMAR T, MEGALIOS A, et al. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer[J]. Nat Genet, 2022, 54(6): 850-860.
doi: 10.1038/s41588-022-01082-3 |
[67] |
RISOM T, GLASS D R, AVERBUKH I, et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma[J]. Cell, 2022, 185(2): 299-310.e18.
doi: 10.1016/j.cell.2021.12.023 pmid: 35063072 |
[68] |
YALA A, MIKHAEL P G, LEHMAN C, et al. Optimizing risk-based breast cancer screening policies with reinforcement learning[J]. Nat Med, 2022, 28(1): 136-143.
doi: 10.1038/s41591-021-01599-w pmid: 35027757 |
[69] |
WANG Y, ACS B, ROBERTSON S, et al. Improved breast cancer histological grading using deep learning[J]. Ann Oncol, 2022, 33(1): 89-98.
doi: 10.1016/j.annonc.2021.09.007 |
[70] |
SAMMUT S J, CRISPIN-ORTUZAR M, CHIN S F, et al. Multi-omic machine learning predictor of breast cancer therapy response[J]. Nature, 2022, 601(7894): 623-629.
doi: 10.1038/s41586-021-04278-5 |
[71] | ZHAO S, YAN C Y, LV H, et al. Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer[J]. Fundam Res, 2022[Epub ahead of print]. |
[1] | XU Rui, WANG Zehao, WU Jiong. Advances in the role of tumor-associated neutrophils in the development of breast cancer [J]. China Oncology, 2024, 34(9): 881-889. |
[2] | CAO Xiaoshan, YANG Beibei, CONG Binbin, LIU Hong. The progress of treatment for brain metastases of triple-negative breast cancer [J]. China Oncology, 2024, 34(8): 777-784. |
[3] | ZHANG Jian. Clinical consideration of two key questions in assessing menopausal status of female breast cancer patients [J]. China Oncology, 2024, 34(7): 619-627. |
[4] | JIANG Dan, SONG Guoqing, WANG Xiaodan. Study on the mechanism of mitochondrial dysfunction and CPT1A/ERK signal transduction pathway regulating malignant behavior in breast cancer [J]. China Oncology, 2024, 34(7): 650-658. |
[5] | DONG Jianqiao, LI Kunyan, LI Jing, WANG Bin, WANG Yanhong, JIA Hongyan. A study on mechanism of SIRT3 inducing endocrine drug resistance in breast cancer via deacetylating YME1L1 [J]. China Oncology, 2024, 34(6): 537-547. |
[6] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[7] | Committee of Breast Cancer Society, China Anti-Cancer Association. Expert consensus on clinical applications of ovarian function suppression for Chinese women with early breast cancer (2024 edition) [J]. China Oncology, 2024, 34(3): 316-333. |
[8] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[9] | ZHANG Siyuan, JIANG Zefei. Important research progress in clinical practice for advanced breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 143-150. |
[10] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[11] | LUO Yang, SUN Tao, SHAO Zhimin, CUI Jiuwei, PAN Yueyin, ZHANG Qingyuan, CHENG Ying, LI huiping, YANG Yan, YE Changsheng, YU Guohua, WANG Jingfen, LIU Yunjiang, LIU Xinlan, ZHOU Yuhong, BAI Yuju, GU Yuanting, WANG Xiaojia, XU Binghe, SONG Lihua. Efficacy, metabolic characteristics, safety and immunogenicity of AK-HER2 compared with reference trastuzumab in patients with metastatic HER2-positive breast cancer: a multicenter, randomized, double-blind phase Ⅲ equivalence trial [J]. China Oncology, 2024, 34(2): 161-175. |
[12] | CHEN Yuanxiang, YU Tao, YANG Shiyu, ZENG Tao, WEI Lan, ZHANG Yan. KDM4A promotes the migration and invasion of breast cancer cell line MDA-MB-231 by downregulating BMP9 [J]. China Oncology, 2024, 34(2): 176-184. |
[13] | HU Xiaoyu, CAI Yuwen, YE Fugui, SHAO Zhimin, HU Weigang, YU Keda. Impact of BRCA1/2 germline mutation on the incidence of second primary cancer following postoperative radiotherapy in patients with triple-negative breast cancer [J]. China Oncology, 2024, 34(2): 185-190. |
[14] | ZHANG Siwei, MA Ding, JIANG Yizhou, SHAO Zhimin. “Subtype-precise” therapy leads diagnostic and therapeutic innovations: a new pattern for precision treatment of breast cancer [J]. China Oncology, 2024, 34(11): 1045-1052. |
[15] | OUYANG Fei, WANG Yang, CHEN Yu, PEI Guoqing, WANG Ling, ZHANG Yang, SHI Lei. Construction of the prediction model of breast cancer bone metastasis based on machine learning [J]. China Oncology, 2024, 34(10): 903-914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd