China Oncology ›› 2023, Vol. 33 ›› Issue (3): 201-209.doi: 10.19401/j.cnki.1007-3639.2023.03.002
• Specialists' Commentary • Previous Articles Next Articles
ZHENG Shengfeng(), ZHU Yiping, YE Dingwei(
)
Received:
2023-01-30
Revised:
2023-02-25
Online:
2023-03-30
Published:
2023-04-17
Contact:
YE Dingwei
Share article
CLC Number:
ZHENG Shengfeng, ZHU Yiping, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of bladder cancer in 2022[J]. China Oncology, 2023, 33(3): 201-209.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2015[J]. CA A Cancer J Clin, 2015, 65(1): 5-29.
doi: 10.3322/caac.21254 |
[3] |
CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA A Cancer J Clin, 2016, 66(2): 115-132.
doi: 10.3322/caac.21338 |
[4] | XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. |
[5] |
LOTAN Y, RAMAN J D, KONETY B, et al. Urinary analysis of FGFR3 and TERT gene mutations enhances performance of cxbladder tests and improves patient risk stratification[J]. J Urol, 2022, 209(4): 762-772.
doi: 10.1097/JU.0000000000003126 |
[6] | ZHANG B F, JIA P L, WANG J Y, et al. Integrated analysis of racial disparities in genomic architecture identifies a trans-ancestry prognostic subtype in bladder cancer[J]. Mol Oncol, 2022. [Online ahead of print] |
[7] |
MERTENS L S, CLAPS F, MAYR R, et al. Prognostic markers in invasive bladder cancer: FGFR3 mutation status versus P53 and Ki-67 expression: a multi-center, multi-laboratory analysis in 1058 radical cystectomy patients[J]. Urol Oncol, 2022, 40(3): 110.e1-110.e9.
doi: 10.1016/j.urolonc.2021.10.010 |
[8] |
LIU Z P, ZENG H, JIN K F, et al. TIGIT and PD-1 expression atlas predicts response to adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer[J]. Br J Cancer, 2022, 126(9): 1310-1317.
doi: 10.1038/s41416-022-01703-y |
[9] |
SHI M J, FONTUGNE J, MORENO-VEGA A, et al. FGFR3 mutational activation can induce luminal-like papillary bladder tumor formation and favors a male sex bias[J]. Eur Urol, 2023, 83(1): 70-81.
doi: 10.1016/j.eururo.2022.09.030 |
[10] | XIA Y, WANG X, LIU Y, et al. PKM2 is essential for bladder cancer growth and maintenance[J]. Cancer Res, 2022, 82(4): 571-585. |
[11] |
GALLO D, YOUNG J T F, FOURTOUNIS J, et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition[J]. Nature, 2022, 604(7907): 749-756.
doi: 10.1038/s41586-022-04638-9 |
[12] | FU S Q, YAO S Y, YUAN Y, et al. Multicenter phase Ⅱ trial of the WEE1 inhibitor adavosertib in refractory solid tumors harboring CCNE1 amplification[J]. J Clin Oncol, 2022. [Online ahead of print] |
[13] |
ZHANG C, YANG T. Long non-coding RNA LINC00473 promotes breast cancer progression via miR-424-5p/CCNE1 pathway[J]. Protein Pept Lett, 2023, 30(1): 72-84.
doi: 10.2174/0929866530666221026164454 |
[14] |
YAO S Y, MERIC-BERNSTAM F, HONG D, et al. Clinical characteristics and outcomes of phase Ⅰ cancer patients with CCNE1 amplification: MD Anderson experiences[J]. Sci Rep, 2022, 12(1): 8701.
doi: 10.1038/s41598-022-12669-5 |
[15] |
BELLMUNT J, KIM J, REARDON B, et al. Genomic predictors of good outcome, recurrence, or progression in high-grade T1 non-muscle-invasive bladder cancer[J]. Cancer Res, 2020, 80(20): 4476-4486.
doi: 10.1158/0008-5472.CAN-20-0977 pmid: 32868381 |
[16] |
DENEKA A Y, BACA Y, SEREBRIISKII I G, et al. Association of TP53 and CDKN2A mutation profile with tumor mutation burden in head and neck cancer[J]. Clin Cancer Res, 2022, 28(9): 1925-1937.
doi: 10.1158/1078-0432.CCR-21-4316 |
[17] |
HARTMANN A, MOSER K, KRIEGMAIR M, et al. Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma[J]. Am J Pathol, 1999, 154(3): 721-727.
pmid: 10079249 |
[18] |
BARTOLETTI R, CAI T, NESI G, et al. Loss of P16 expression and chromosome 9p21 LOH in predicting outcome of patients affected by superficial bladder cancer[J]. J Surg Res, 2007, 143(2): 422-427.
pmid: 17612565 |
[19] |
TRYBEK T, KOWALIK A, GÓŹDŹ S, et al. Telomeres and telomerase in oncogenesis[J]. Oncol Lett, 2020, 20(2): 1015-1027.
doi: 10.3892/ol.2020.11659 pmid: 32724340 |
[20] |
VERMA S, SHANKAR E, LIN S, et al. Identification of key genes associated with progression and prognosis of bladder cancer through integrated bioinformatics analysis[J]. Cancers (Basel), 2021, 13(23): 5931.
doi: 10.3390/cancers13235931 |
[21] | XU Y J, ZENG H, JIN K F, et al. Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscle-invasive bladder cancer[J]. J Immunother Cancer, 2022, 10(3): e003416. |
[22] |
MA Z K, LI X D, MAO Y Z, et al. Interferon-dependent SLC14A1 + cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer[J]. Cancer Cell, 2022, 40(12): 1550-1565. e7.
doi: 10.1016/j.ccell.2022.11.005 |
[23] |
ZHANG Z, LIANG Z J, LI D, et al. Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer[J]. Hum Cell, 2022, 35(2): 649-664.
doi: 10.1007/s13577-022-00673-w pmid: 35044630 |
[24] |
LIU L L, HOU Y X, DENG C Q, et al. Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment[J]. Nat Commun, 2022, 13(1): 6740.
doi: 10.1038/s41467-022-34495-z pmid: 36347860 |
[25] |
LIU Y D, ZHANG Q M, XING B C, et al. Immune phenotypic linkage between colorectal cancer and liver metastasis[J]. Cancer Cell, 2022, 40(4): 424-437. e5.
doi: 10.1016/j.ccell.2022.02.013 pmid: 35303421 |
[26] |
JI Q, ZHOU L H, SUI H, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation[J]. Nat Commun, 2020, 11(1): 1211.
doi: 10.1038/s41467-020-14869-x pmid: 32139701 |
[27] | DU T C, ZHANG K, ZHANG Z B, et al. ITGBL1 transcriptionally inhibited by JDP2 promotes the development of pancreatic cancer through the TGF-beta/Smad pathway[J]. Revista Brasileira De Pesquisas Med E Biol, 2022, 55: e11989. |
[28] |
PETERSON C M, HELTERBRAND M R, HARTGERINK J D. Covalent capture of a collagen mimetic peptide with an integrin-binding motif[J]. Biomacromolecules, 2022, 23(6): 2396-2403.
doi: 10.1021/acs.biomac.2c00155 |
[29] |
HAAG S L, SCHIELE N R, BERNARDS M T. Enhancement and mechanisms of MC3T3-E1 osteoblast-like cell adhesion to albumin through calcium exposure[J]. Biotechnol Appl Biochem, 2022, 69(2): 492-502.
doi: 10.1002/bab.v69.2 |
[30] |
LAFORGUE L, FERTIN A, USSON Y, et al. Efficient deformation mechanisms enable invasive cancer cells to migrate faster in 3D collagen networks[J]. Sci Rep, 2022, 12(1): 7867.
doi: 10.1038/s41598-022-11581-2 pmid: 35550548 |
[31] | DU G F, PATZELT S, VAN BEEK N, et al. Mucous membrane pemphigoid[J]. Autoimmun Rev, 2022, 21(4): 103036. |
[32] |
ZHENG R, DU M L, GE Y Q, et al. Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing[J]. Oncogene, 2021, 40(13): 2382-2394.
doi: 10.1038/s41388-021-01672-1 pmid: 33658628 |
[33] |
WALTER V, DEGRAFF D J, YAMASHITA H. Characterization of laminin-332 gene expression in molecular subtypes of human bladder cancer[J]. Am J Clin Exp Urol, 2022, 10(5): 311-319.
pmid: 36313206 |
[34] |
PICHLER R, TULCHINER G, FRITZ J, et al. Urinary UBC rapid and NMP22 test for bladder cancer surveillance in comparison to urinary cytology: results from a prospective single-center study[J]. Int J Med Sci, 2017, 14(9): 811-819.
doi: 10.7150/ijms.19929 pmid: 28824318 |
[35] |
HENTSCHEL A E, BEIJERT I J, BOSSCHIETER J, et al. Bladder cancer detection in urine using DNA methylation markers: a technical and prospective preclinical validation[J]. Clin Epigenetics, 2022, 14(1): 19.
doi: 10.1186/s13148-022-01240-8 pmid: 35123558 |
[36] |
OSSOLIŃSKI K, RUMAN T, COPIÉ V, et al. Metabolomic and elemental profiling of blood serum in bladder cancer[J]. J Pharm Anal, 2022, 12(6): 889-900.
doi: 10.1016/j.jpha.2022.08.004 pmid: 36605581 |
[37] |
SONG P, WU L R, YAN Y H, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics[J]. Nat Biomed Eng, 2022, 6(3): 232-245.
doi: 10.1038/s41551-021-00837-3 pmid: 35102279 |
[38] | XIAO Y, JU L G, QIAN K Y, et al. Non-invasive diagnosis and surveillance of bladder cancer with driver and passenger DNA methylation in a prospective cohort study[J]. Clin Transl Med, 2022, 12(8): e1008. |
[39] |
WITJES J A, BRUINS H M, CATHOMAS R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1): 82-104.
doi: 10.1016/j.eururo.2020.03.055 pmid: 32360052 |
[40] |
PARK J C, CITRIN D E, AGARWAL P K, et al. Multimodal management of muscle-invasive bladder cancer[J]. Curr Probl Cancer, 2014, 38(3): 80-108.
doi: 10.1016/j.currproblcancer.2014.06.001 |
[41] | KOBAYASHI K, MATSUMOTO H, MISUMI T, et al. The efficacy of trimodal chemoradiotherapy with gemcitabine and cisplatin as a bladder-preserving strategy for the treatment of muscle-invasive bladder cancer: a single-arm phase Ⅱ study[J]. Jpn J Clin Oncol, 2022, 52(10): 1201-1207. |
[42] | QIU J L, ZHANG H F, XU D K, et al. Comparing long-term survival outcomes for muscle-invasive bladder cancer patients who underwent with radical cystectomy and bladder-sparing trimodality therapy: a multicentre cohort analysis[J]. J Oncol, 2022, 2022: 7306198. |
[43] |
ALATI A, FABIANO E, GEISS R, et al. Bladder preservation in older adults with muscle-invasive bladder cancer: a retrospective study with concurrent chemotherapy and twice-daily hypofractionated radiotherapy schedule[J]. J Geriatr Oncol, 2022, 13(7): 978-986.
doi: 10.1016/j.jgo.2022.05.014 pmid: 35717533 |
[44] |
MARCQ G, SOUHAMI L, CURY F L, et al. Phase 1 trial of atezolizumab plus trimodal therapy in patients with localized muscle-invasive bladder cancer[J]. Int J Radiat Oncol Biol Phys, 2021, 110(3): 738-741.
doi: 10.1016/j.ijrobp.2020.12.033 |
[45] |
FUKUSHIMA H, YOSHIDA S, KIJIMA T, et al. Combination of cisplatin and irradiation induces immunogenic cell death and potentiates postirradiation anti-PD-1 treatment efficacy in urothelial carcinoma[J]. Int J Mol Sci, 2021, 22(2): 535.
doi: 10.3390/ijms22020535 |
[46] |
ALMARZOUQ A, KOOL R, AL BULUSHI Y, et al. Impact of sarcopenia on outcomes of patients treated with trimodal therapy for muscle invasive bladder cancer[J]. Urol Oncol, 2022, 40(5): 194.e15-194.e22.
doi: 10.1016/j.urolonc.2021.11.002 |
[47] | PATIL G, BASU A. Emerging perioperative therapeutic approaches in muscle invasive bladder cancer[J]. Ther Adv Urol, 2022, 14: 17562872221134389. |
[48] |
Advanced Bladder Cancer ABC Meta-analysis Collaborators Group. Adjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and meta-analysis of individual participant data from randomised controlled trials[J]. Eur Urol, 2022, 81(1): 50-61.
doi: 10.1016/j.eururo.2021.09.028 |
[49] |
MIRON B, HOFFMAN-CENSITS J H, ANARI F, et al. Defects in DNA repair genes confer improved long-term survival after cisplatin-based neoadjuvant chemotherapy for muscle-invasive bladder cancer[J]. Eur Urol Oncol, 2020, 3(4): 544-547.
doi: S2588-9311(20)30028-6 pmid: 32165095 |
[50] |
GROENENDIJK F H, DE JONG J, FRANSEN VAN DE PUTTE E E, et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy[J]. Eur Urol, 2016, 69(3): 384-388.
doi: 10.1016/j.eururo.2015.01.014 pmid: 25636205 |
[51] |
LI Q, DAMISH A W, FRAZIER Z, et al. ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer[J]. Clin Cancer Res, 2019, 25(3): 977-988.
doi: 10.1158/1078-0432.CCR-18-1001 pmid: 29980530 |
[52] |
GIL-JIMENEZ A, VAN DORP J, CONTRERAS-SANZ A, et al. Assessment of predictive genomic biomarkers for response to cisplatin-based neoadjuvant chemotherapy in bladder cancer[J]. Eur Urol, 2023, 83(4): 313-317.
doi: 10.1016/j.eururo.2022.07.023 |
[53] |
WANG M L, CHEN X L, TAN P, et al. Acquired semi-squamatization during chemotherapy suggests differentiation as a therapeutic strategy for bladder cancer[J]. Cancer Cell, 2022, 40(9): 1044-1059.e8.
doi: 10.1016/j.ccell.2022.08.010 pmid: 36099882 |
[54] | PFISTER C, GRAVIS G, FLÉCHON A, et al. Dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin or gemcitabine and cisplatin as perioperative chemotherapy for patients with nonmetastatic muscle-invasive bladder cancer: results of the GETUG-AFU V05 VESPER trial[J]. J Clin Oncol, 2022, 40(18): 2013-2022. |
[55] |
HALL E, HUSSAIN S A, PORTA N, et al. Chemoradiotherapy in muscle-invasive bladder cancer: 10-yr follow-up of the phase 3 randomised controlled BC2001 trial[J]. Eur Urol, 2022, 82(3): 273-279.
doi: 10.1016/j.eururo.2022.04.017 pmid: 35577644 |
[56] |
BASILE G, BANDINI M, GIBB E A, et al. Neoadjuvant pembrolizumab and radical cystectomy in patients with muscle-invasive urothelial bladder cancer: 3-year median follow-up update of PURE-01 trial[J]. Clin Cancer Res, 2022, 28(23): 5107-5114.
doi: 10.1158/1078-0432.CCR-22-2158 pmid: 36190522 |
[57] |
SYLVESTER R J, BRAUSI M A, KIRKELS W J, et al. Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, bacillus Calmette-Guérin, and bacillus Calmette-Guérin plus isoniazid in patients with intermediate- and high-risk stage Ta T1 urothelial carcinoma of the bladder[J]. Eur Urol, 2010, 57(5): 766-773.
doi: 10.1016/j.eururo.2009.12.024 pmid: 20034729 |
[58] |
SALOMÉ B, SFAKIANOS J P, RANTI D, et al. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer[J]. Cancer Cell, 2022, 40(9): 1027-1043.e9.
doi: 10.1016/j.ccell.2022.08.005 pmid: 36099881 |
[59] |
YOU S, KIM M, HOI X P, et al. Discoidin domain receptor-driven gene signatures as markers of patient response to anti-PD-L1 immune checkpoint therapy[J]. J Natl Cancer Inst, 2022, 114(10): 1380-1391.
doi: 10.1093/jnci/djac140 pmid: 35918812 |
[60] |
FUNT S A, LATTANZI M, WHITING K, et al. Neoadjuvant atezolizumab with gemcitabine and cisplatin in patients with muscle-invasive bladder cancer: a multicenter, single-arm, phase Ⅱ trial[J]. J Clin Oncol, 2022, 40(12): 1312-1322.
doi: 10.1200/JCO.21.01485 |
[61] |
SZABADOS B, KOCKX M, ASSAF Z J, et al. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder[J]. Eur Urol, 2022, 82(2): 212-222.
doi: 10.1016/j.eururo.2022.04.013 pmid: 35577646 |
[62] | ROSENBERG J, SRIDHAR S S, ZHANG J S, et al. EV-101: a phase Ⅰ study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma[J]. J Clin Oncol, 2020, 38(10): 1041-1049. |
[63] |
POWLES T, ROSENBERG J E, SONPAVDE G P, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma[J]. N Engl J Med, 2021, 384(12): 1125-1135.
doi: 10.1056/NEJMoa2035807 |
[64] | FAN Y, LI Q H, SHEN Q, et al. Head-to-head comparison of the expression differences of NECTIN-4, TROP-2, and HER2 in urothelial carcinoma and its histologic variants[J]. Front Oncol, 2022, 12: 858865. |
[65] |
BARDIA A, MAYER I A, DIAMOND J R, et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer[J]. J Clin Oncol, 2017, 35(19): 2141-2148.
doi: 10.1200/JCO.2016.70.8297 pmid: 28291390 |
[66] |
FALTAS B, GOLDENBERG D M, OCEAN A J, et al. Sacituzumab govitecan, a novel antibody: drug conjugate, in patients with metastatic platinum-resistant urothelial carcinoma[J]. Clin Genitourin Cancer, 2016, 14(1): e75-e79.
doi: 10.1016/j.clgc.2015.10.002 |
[67] |
SHENG X, YAN X, WANG L, et al. Open-label, multicenter, phase Ⅱ study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma[J]. Clin Cancer Res, 2021, 27(1): 43-51.
doi: 10.1158/1078-0432.CCR-20-2488 |
[68] | SENG X N, HE Z S, HAN W Q, et al. An open-label, single-arm, multicenter, phase Ⅱ study of RC48 to evaluate and safety of subjects with HER2 overexpressing locally advanced or metastatic urothelial cancer (RC48-C009)[R]. ASCO, 2021: abstract 4584. |
[69] | ZHOU L, XU H Y, LI S M, et al. Study RC48-C014: preliminary results of RC48-ADC combined with toripalimab in patients with locally advanced or metastatic urothelial carcinoma[J]. J Clin Oncol, 2022, 40(6_suppl): 515. |
[1] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[2] | Urologic Chinese Oncology Group. Expert consensus on early diagnosis and treatment of bladder cancer (2024 edition) [J]. China Oncology, 2024, 34(6): 607-618. |
[3] | Professional Committee on Gastric Cancer of Shanghai Anticancer Association , Professional Committee on Gastrointestinal Cancer of China Association for Promotion of Health Science and Technology . Chinese expert consensus on clinical practice of locally advanced gastric cancer invading adjacent organs (2024 edition) [J]. China Oncology, 2024, 34(5): 517-526. |
[4] | QIAN Bin, CHEN Haiquan. Important progress in surgical treatment of lung cancer in 2023 [J]. China Oncology, 2024, 34(4): 335-339. |
[5] | FENG Zheng, GUO Qinhao, ZHU Jun, WU Xiaohua, WEN Hao. Progress in treatment of gynecological cancer in 2023 [J]. China Oncology, 2024, 34(4): 340-360. |
[6] | MA Fenghua, JIANG Anqi, CHEN Yiqing, XU Congjian, KANG Yu. Magnetic resonance imaging for distinguishing gastric-type endocervical adenocarcinoma from lobular endocervical glandular hyperplasia [J]. China Oncology, 2024, 34(4): 380-388. |
[7] | XU Yonghu, XU Dazhi. Progress and prospects of gastric cancer treatment in the 21st century [J]. China Oncology, 2024, 34(3): 239-249. |
[8] | WANG Xuefei, ZHOU Peng, TANG Zhaoqing. New progress and development trend of surgical treatment for gastric cancer [J]. China Oncology, 2024, 34(3): 250-258. |
[9] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[10] | ZHANG Siyuan, JIANG Zefei. Important research progress in clinical practice for advanced breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 143-150. |
[11] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[12] | LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023 [J]. China Oncology, 2024, 34(1): 1-12. |
[13] | Colorectal Cancer Special Committee of Shanghai Anti-Cancer Association . Shanghai plan for early screening, diagnosis and treatment of colorectal cancer (2023 edition) [J]. China Oncology, 2024, 34(1): 13-66. |
[14] | LI Tong, YANG Huijuan. Progress in diagnosis and treatment of mucinous ovarian cancer [J]. China Oncology, 2024, 34(1): 90-96. |
[15] | XU Hongtao, HUANG Xiaojuan, ZHENG Chongyang, ZHANG Zhiyuan. Development and progress of fluorescence imaging technology in diagnosis and treatment of oral cancer [J]. China Oncology, 2023, 33(9): 874-878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd