China Oncology ›› 2024, Vol. 34 ›› Issue (7): 686-694.doi: 10.19401/j.cnki.1007-3639.2024.07.008
• Review • Previous Articles Next Articles
LIANG Yingyun1(), CHEN Jianhua2(
)
Received:
2023-12-25
Revised:
2024-06-10
Online:
2024-07-30
Published:
2024-08-08
Contact:
CHEN Jianhua
Share article
CLC Number:
LIANG Yingyun, CHEN Jianhua. Application progress of oncolytic virus combined with immunotherapy in the treatment of malignant tumors[J]. China Oncology, 2024, 34(7): 686-694.
Tab. 1
Ongoing or completed clinical studies with OV and ICI or ACT therapies"
Immunotherapy type | Oncolytic virus | Combination agent/target | Tumor type | Reference | Phase/status |
---|---|---|---|---|---|
ICI | Herpes simplex virus (RP1) | Nivolumab | Advanced and/or refractory solid tumors | NCT03767348 | Phase Ⅰ/Ⅱ (recruiting) |
Herpes simplex virus type 1 (ONCR-177) | Pembrolizumab | Advanced and/or refractory cutaneous, subcutaneous or metastatic nodal solid tumors | NCT04348916 | Phase Ⅰ (terminated) | |
Herpes simplex virus type 1 (HF10) | Ipilimumab | Melanoma stage Ⅲ or Ⅳ | NCT03153085 | Phase Ⅱ (completed) | |
Herpes simplex virus type 1 (HF10) | Ipilimumab | Malignant melanoma | NCT02272855 | Phase Ⅱ (completed) | |
Adenovirus (TILT-123) | Pembrolizumab | Platinum-refractory and/or platinum-resistant ovarian carcinoma | NCT05271318 | Phase Ⅰ (recruiting) | |
Adenovirus (TILT-123) | Avelumab | Melanoma, HNSCC | NCT05222932 | Phase Ⅰ (recruiting) | |
Adenovirus (DNX-2401) | Pembrolizumab | Brain cancer | NCT02798406 | Phase Ⅱ (completed) | |
Adenovirus (Ad-MAGEA3)+MG1 Maraba oncolytic virus (MG1-MAGEA3) | Pembrolizumab | Metastatic NSCLC | NCT02879760 | Phase Ⅰ/Ⅱ (completed) | |
chimeric orthopoxvirus (CF33-hNIS) | Pembrolizumab | Advanced or metastatic solid tumors | NCT05346484 | Phase Ⅰ (recruiting) | |
Reovirus (REOLYSIN) | Pembrolizumab | Pancreatic adenocarcinoma | NCT02620423 | Phase Ⅰ (completed) | |
Reovirus (pelareorep) | Nivolumab+carfilzomib+dexamethasone | Recurrent plasma cell myeloma | NCT03605719 | Phase Ⅰ (completed) | |
Newcastle disease virus (MEDI5395) | Durvalumab | Advanced solid tumors | NCT03889275 | Phase Ⅰ (completed) | |
Vesicular stomatitis virus (Revottack) | Toripalimab | Advanced solid tumor | NCT05644509 | Phase Ⅰ (not yet recruiting) | |
Vesicular stomatitis virus (VSV-IFNβ-NIS) | Pembrolizumab | Refractory NSCLC and HNSCC | NCT03647163 | Phase Ⅰ/Ⅱ (recruiting) | |
Coxsackievirus (CVA21) | Ipilimumab | Uveal melanoma metastases to liver | NCT03408587 | Phase Ⅰ (completed) | |
Vaccinia virus (JX-594) | Cemiplimab | Renal cell carcinoma | NCT03294083 | Phase Ⅰ/Ⅱ (active, not recruiting) | |
Vaccinia virus (JX-594) | Durvalumab + tremelimumab | Refractory colorectal cancer | NCT03206073 | Phase Ⅰ/Ⅱ (completed) | |
Vaccinia virus (JX-594) | Ipilimumab | Metastatic/advanced solid tumors | NCT02977156 | Phase Ⅰ (completed) | |
ACT | Adenovirus ( CAdVEC) | HER2-CAR-T | HER2 positive cancer | NCT03740256 | Phase Ⅰ (recruiting) |
Vesicular stomatitis virus (OVV-01) | trained immunity NK (IBR900) | Advanced solid tumor, relapsed/refractory lymphoma | NCT05271279 | Phase Ⅱ (terminated) | |
Adenovirus (TILT-123) | Adoptive TIL | Metastatic melanoma | NCT04217473 | Phase Ⅰ (recruiting) | |
ALVAC MART-1 | Anti-MART-1 F5 TCR cells | Metastatic melanoma | NCT00612222 | Phase Ⅱ (terminated) |
[1] |
MA J, RAMACHANDRAN M, JIN C, et al. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer[J]. Cell Death Dis, 2020, 11(1): 48.
doi: 10.1038/s41419-020-2236-3 pmid: 31969562 |
[2] | FU Q F, CHEN N, GE C L, et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis[J]. Oncoimmunology, 2019, 8(7): 1593806. |
[3] | HUANG L L, ZHAO H X, SHAN M Y, et al. Oncolytic adenovirus H101 ameliorate the efficacy of anti-PD-1 monotherapy in colorectal cancer[J]. Cancer Med, 2022, 11(23): 4575-4587. |
[4] |
TODO T, ITO H, INO Y, et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial[J]. Nat Med, 2022, 28(8): 1630-1639.
doi: 10.1038/s41591-022-01897-x pmid: 35864254 |
[5] | ANNELS N E, MANSFIELD D, ARIF M, et al. Phase Ⅰ trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer[J]. Clin Cancer Res, 2019, 25(19): 5818-5831. |
[6] |
BOMMAREDDY P K, SHETTIGAR M, KAUFMAN H L. Integrating oncolytic viruses in combination cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(8): 498-513.
doi: 10.1038/s41577-018-0014-6 pmid: 29743717 |
[7] |
FU X P, ZHANG X L. Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype[J]. Cancer Res, 2002, 62(8): 2306-2312.
pmid: 11956088 |
[8] | ZHAO J, QIN C, LIU Y Z, et al. Herpes simplex virus and pattern recognition receptors: an arms race[J]. Front Immunol, 2020, 11: 613799. |
[9] |
GUO Z S, LU B F, GUO Z B, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics[J]. J Immunother Cancer, 2019, 7(1): 6.
doi: 10.1186/s40425-018-0495-7 pmid: 30626434 |
[10] | TOULMONDE M, COUSIN S, KIND M, et al. Randomized phase 2 trial of intravenous oncolytic virus JX-594 combined with low-dose cyclophosphamide in patients with advanced soft-tissue sarcoma[J]. J Hematol Oncol, 2022, 15(1): 149. |
[11] | PORTAL D E, WEISS R E, WOJTOWICZ M, et al. Phase Ⅰ neoadjuvant study of intravesical recombinant fowlpox-GM-CSF (rF-GM-CSF) or fowlpox-TRICOM (rF-TRICOM) in patients with bladder carcinoma[J]. Cancer Gene Ther, 2020, 27(6): 438-447. |
[12] |
PARK S H, BREITBACH C J, LEE J, et al. Phase 1b trial of biweekly intravenous pexa-vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer[J]. Mol Ther, 2015, 23(9): 1532-1540.
doi: 10.1038/mt.2015.109 pmid: 26073886 |
[13] |
HEO J, REID T, RUO L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer[J]. Nat Med, 2013, 19(3): 329-336.
doi: 10.1038/nm.3089 pmid: 23396206 |
[14] | PONCE S, CEDRÉS S, RICORDEL C, et al. ONCOS-102 plus pemetrexed and platinum chemotherapy in malignant pleural mesothelioma: a randomized phase 2 study investigating clinical outcomes and the tumor microenvironment[J]. J Immunother Cancer, 2023, 11(9): e007552. |
[15] |
ZHU Z, ROBERT MCGRAY A J R, JIANG W J, et al. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways[J]. Mol Cancer, 2022, 21(1): 196.
doi: 10.1186/s12943-022-01664-z pmid: 36221123 |
[16] |
XIA T L, KONNO H, BARBER G N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis[J]. Cancer Res, 2016, 76(22): 6747-6759.
doi: 10.1158/0008-5472.CAN-16-1404 pmid: 27680683 |
[17] | ATASHEVA S, EMERSON C C, YAO J, et al. Systemic cancer therapy with engineered adenovirus that evades innate immunity[J]. Sci Transl Med, 2020, 12(571): eabc6659. |
[18] | MCLAUGHLIN M, PEDERSEN M, ROULSTONE V, et al. The PERK inhibitor GSK2606414 enhances reovirus infection in head and neck squamous cell carcinoma via an ATF4-dependent mechanism[J]. Mol Ther Oncolytics, 2020, 16: 238-249. |
[19] | DAVOLA M E, MOSSMAN K L. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy?[J]. Oncoimmunology, 2019, 8(6): e1581528. |
[20] |
QUAIL D F, JOYCE J A. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11): 1423-1437.
doi: 10.1038/nm.3394 pmid: 24202395 |
[21] | ANG L, LI J, DONG H, et al. Chimeric oncolytic adenovirus armed chemokine rantes for treatment of breast cancer[J]. Bioengineering, 2022, 9(8): 342. |
[22] |
BRACCI L, SCHIAVONI G, SISTIGU A, et al. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer[J]. Cell Death Differ, 2014, 21(1): 15-25.
doi: 10.1038/cdd.2013.67 pmid: 23787994 |
[23] |
GUJAR S, POL J G, KIM Y, et al. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies[J]. Trends Immunol, 2018, 39(3): 209-221.
doi: S1471-4906(17)30228-4 pmid: 29275092 |
[24] | LUO Y, LIN C L, ZOU Y D, et al. Tumor-targeting oncolytic virus elicits potent immunotherapeutic vaccine responses to tumor antigens[J]. Oncoimmunology, 2020, 9(1): 1726168. |
[25] | MACEDO N, MILLER D M, HAQ R, et al. Clinical landscape of oncolytic virus research in 2020[J]. J Immunother Cancer, 2020, 8(2): e001486. |
[26] | BELLUCCI R, MARTIN A, BOMMARITO D, et al. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression[J]. Oncoimmunology, 2015, 4(6): e1008824. |
[27] | DUMMER R, GYORKI D E, HYNGSTROM J, et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage ⅢB-ⅣM1a melanoma: a randomized, open-label, phase 2 trial[J]. Nat Med, 2021, 27(10): 1789-1796. |
[28] | CUI C L, WANG X, LIAN B, et al. OrienX010, an oncolytic virus, in patients with unresectable stage ⅢC-Ⅳ melanoma: a phase Ⅰb study[J]. J Immunother Cancer, 2022, 10(4): e004307. |
[29] | MARTINEZ-QUINTANILLA J, SEAH I, CHUA M, et al. Oncolytic viruses: overcoming translational challenges[J]. J Clin Invest, 2019, 129(4): 1407-1418. |
[30] |
CHEN J H, GAO P, YUAN S J, et al. Oncolytic adenovirus complexes coated with lipids and calcium phosphate for cancer gene therapy[J]. ACS Nano, 2016, 10(12): 11548-11560.
doi: 10.1021/acsnano.6b06182 pmid: 27977128 |
[31] |
LI Y, LI L J, WANG L J, et al. Selective intra-arterial infusion of rAd-p53 with chemotherapy for advanced oral cancer: a randomized clinical trial[J]. BMC Med, 2014, 12: 16.
doi: 10.1186/1741-7015-12-16 pmid: 24479409 |
[32] | ZHANG Y L, QIAN L, CHEN K, et al. Oncolytic adenovirus in treating malignant ascites: a phase Ⅱ trial and longitudinal single-cell study[J]. Mol Ther, 2024, 32(6): 2000-2020. |
[33] |
DEY M, YU D, KANOJIA D, et al. Intranasal oncolytic virotherapy with CXCR4-enhanced stem cells extends survival in mouse model of glioma[J]. Stem Cell Reports, 2016, 7(3): 471-482.
doi: S2213-6711(16)30150-3 pmid: 27594591 |
[34] | BELCAID Z, BERREVOETS C, CHOI J, et al. Low-dose oncolytic adenovirus therapy overcomes tumor-induced immune suppression and sensitizes intracranial gliomas to anti-PD-1 therapy[J]. Neurooncol Adv, 2020, 2(1): vdaa011. |
[35] | CHESNEY J A, PUZANOV I, COLLICHIO F A, et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase Ⅱ trial[J]. J Immunother Cancer, 2023, 11(5): e006270. |
[36] | BEKAII-SAAB T, KIM R, KIM T W, et al. Third- or later-line therapy for metastatic colorectal cancer: reviewing best practice[J]. Clin Colorectal Cancer, 2019, 18(1): e117-e129. |
[37] | MONGE C, XIE C Q, MYOJIN Y, et al. Phase Ⅰ/Ⅱ study of PexaVec in combination with immune checkpoint inhibition in refractory metastatic colorectal cancer[J]. J Immunother Cancer, 2023, 11(2): e005640. |
[38] | KLEINPETER P, FEND L, THIOUDELLET C, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death-1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition[J]. Oncoimmunology, 2016, 5(10): e1220467. |
[39] |
ELLIS G I, SHEPPARD N C, RILEY J L. Genetic engineering of T cells for immunotherapy[J]. Nat Rev Genet, 2021, 22(7): 427-447.
doi: 10.1038/s41576-021-00329-9 pmid: 33603158 |
[40] | CHEN T Y, DING X Q, LIAO Q B, et al. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy[J]. J Immunother Cancer, 2021, 9(1): e001647. |
[41] | SANTOS J, HEINIÖ C, QUIXABEIRA D, et al. Systemic delivery of oncolytic adenovirus to tumors using tumor-infiltrating lymphocytes as carriers[J]. Cells, 2021, 10(5): 978. |
[42] | WANG G Q, ZHANG Z L, ZHONG K H, et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma[J]. Mol Ther, 2023, 31(1): 134-153. |
[43] |
YE K, LI F, WANG R K, et al. An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ[J]. Mol Ther, 2022, 30(12): 3658-3676.
doi: 10.1016/j.ymthe.2022.06.010 pmid: 35715953 |
[44] | PARK A K, FONG Y, KIM S I, et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors[J]. Sci Transl Med, 2020, 12(559): eaaz1863. |
[45] | WALSH S R, BASTIN D, CHEN L, et al. Type Ⅰ IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity[J]. J Clin Invest, 2019, 129(2): 518-530. |
[46] |
ROSEWELL SHAW A, PORTER C E, WATANABE N, et al. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer[J]. Mol Ther, 2017, 25(11): 2440-2451.
doi: S1525-0016(17)30424-0 pmid: 28974431 |
[47] |
ZHENG N B, FANG J, XUE G, et al. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance[J]. Cancer Cell, 2022, 40(9): 973-985.e7.
doi: 10.1016/j.ccell.2022.08.001 pmid: 36027915 |
[48] | PAKOLA S A, PELTOLA K J, CLUBB J H, et al. Safety, efficacy, and biological data of T cell-enabling oncolytic adenovirus TILT-123 in advanced solid cancers from the TUNIMO monotherapy phase Ⅰ trial[J]. Clin Cancer Res, 2024. [Epub Ahead of Print] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd