China Oncology ›› 2022, Vol. 32 ›› Issue (9): 827-835.doi: 10.19401/j.cnki.1007-3639.2022.09.010
• Article • Previous Articles Next Articles
LÜ Ye1(), YING Yexia2, YANG Wenjing1, HOU Yujin1, YUAN Chunxiu1, CAO Xiangmei2(
)
Received:
2022-01-07
Revised:
2022-06-01
Online:
2022-09-30
Published:
2022-10-24
Contact:
CAO Xiangmei
Share article
CLC Number:
LÜ Ye, YING Yexia, YANG Wenjing, HOU Yujin, YUAN Chunxiu, CAO Xiangmei. The effect of DZNep on tumor microenvironment through regulating exosomes derived from invasive breast carcinoma[J]. China Oncology, 2022, 32(9): 827-835.
Fig. 1
Changes of Exosomes in Breast Cancer before and after DZNep Treatment A: Compared with the control group, the molecular weights of CD9, CD63 and TSG101 in the DZNep treatment group were 25×103, 26×103 and 44×103, respectively. B: NTA results showed that the detection concentration of the control group was 2.7×107 particles/mL, the peak particle size was 180.5 nm, and the measured average particle size was 185.8 nm; The detection concentration of DZNep intervention group was 3.3×107 Particles/mL, the peak particle size was 161.4 nm, and the measured average particle size was 162.6 nm. C: Compared with the control group, the number and volume of exosomes in DZNep group were reduced."
Fig. 2
Analysis and comparison of EZH2 expression in various tumors A: TCGA database detection analysis showed that EZH2 expression was higher in breast cancer than in adjacent non-cancerous tissues; B: Wayne diagram showed that high EZH2 expression was positively correlated with upregulation of both immune cells and stromal cells; C: The relationship with EMT-related molecule expression showed that high EZH2 expression was positively correlated with E-cadherin, N-cadherin, and vimentin expression in BRCA, positively correlated with BRCA-Luminal B E-cadherin, negatively correlated with N-cadherin, and positively correlated with BRCA-Luminal A N-cadherin and vimentin expression."
Fig. 3
Expression of EZH2 and EMT-related proteins A: EZH2 expression was down-regulated in the DZNep treatment group compared with the control group; B: DZNep treatment group, EMT-related protein E-cadherin expression was increased and vimentin expression was decreased.*: P<0.05, compared with NC group."
Fig. 4
Expression of intercellular junction proteins in response to DZNep A: Compared with the control group, the expression of collagen Ⅵ, a microenvironment-related protein, was significantly increased in the DZNep treatment group; B: Microenvironment-associated protein claudin 5 expression was markedly increased; C: The expression of ZO-1 and aquaporin 4 was significantly decreased; D: The expression of connexin 43 and laminin was significantly decreased; E: The expression of occludin was significantly lower. *: P<0.05, compared with NC group."
[1] | PECERO M L, SALVADOR-BOFILL J, MOLINA-PINELO S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer[J]. Cell Oncol (Dordr), 2019, 42(1): 1-12. |
[2] | YI Y, WU M, ZENG H, et al. Tumor-derived exosomal non-coding RNAs: the emerging mechanisms and potential clinical applications in breast cancer[J]. Front Oncol, 2021, 11: 738945. |
[3] |
FIGUEROA J, PHILLIPS L M, SHAHAR T, et al. Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587[J]. Cancer Res, 2017, 77(21): 5808-5819.
doi: 10.1158/0008-5472.CAN-16-2524 pmid: 28855213 |
[4] | 马爽, 窦赫, 刘宇琪, 等. 外泌体miRNAs在乳腺癌肿瘤微环境中的研究进展[J]. 现代肿瘤医学, 2021, 29(18): 3295-3299. |
MA S, DOU H, LIU Y Q, et al. Research progress of exosomal miRNAs in the tumor microenvironment of breast cancer[J]. J Mod Oncol, 2021, 29(18): 3295-3299. | |
[5] | 孙蓓丽, 王玉刚. 外泌体与胃癌关系的研究进展[J]. 胃肠病学, 2018, 23(11): 697-700. |
SUN B L, WANG Y G. Advances in study on correlation of exosomes with gastric cancer[J]. Chin J Gastroenterol, 2018, 23(11): 697-700. | |
[6] | 宫伟, 吴霞, 马俊, 等. 外泌体在肿瘤干细胞维持和肿瘤发生与发展中的作用[J]. 实用肿瘤杂志, 2020, 35(1): 79-82. |
GONG W, WU X, MA J, et al. The role of exosomes in cancer stem cell maintenance and tumor development[J]. J Pract Oncol, 2020, 35(1): 79-82. | |
[7] |
HUANG R, JIN X, GAO Y Y, et al. DZNep inhibits Hif-1α and Wnt signalling molecules to attenuate the proliferation and invasion of BGC-823 gastric cancer cells[J]. Oncol Lett, 2019, 18(4): 4308-4316.
doi: 10.3892/ol.2019.10769 pmid: 31579098 |
[8] | 吴贝, 李志英, 王俊杰. DZNep在肿瘤治疗中的研究进展[J]. 肿瘤, 2016, 36(8): 938-943. |
WU B, LI Z Y, WANG J J. Research progress in DZNep in tumor therapy[J]. Tumor, 2016, 36(8): 938-943. | |
[9] |
GERGELY J E, DORSEY A E, DIMRI G P, et al. Timosaponin A-Ⅲ inhibits oncogenic phenotype via regulation of PcG protein BMI1 in breast cancer cells[J]. Mol Carcinog, 2018, 57(7): 831-841.
doi: 10.1002/mc.22804 |
[10] |
MARGUERON R, REINBERG D. The polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349.
doi: 10.1038/nature09784 |
[11] |
RIQUELME E, BEHRENS C, LIN H Y, et al. Modulation of EZH2 expression by MEK-ERK or PI3K-AKT signaling in lung cancer is dictated by different KRAS oncogene mutations[J]. Cancer Res, 2016, 76(3): 675-685.
doi: 10.1158/0008-5472.CAN-15-1141 pmid: 26676756 |
[12] |
JUNG H Y, JUN S, LEE M, et al. PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation[J]. Mol Cell, 2013, 52(2): 193-205.
doi: 10.1016/j.molcel.2013.08.028 |
[13] | MOCHIZUKI D, MISAWA Y, KAWASAKI H, et al. Aberrant epigenetic regulation in head and neck cancer due to distinct EZH2 overexpression and DNA hypermethylation[J]. Int J Mol Sci, 2018, 19(12): E3707. |
[14] | YAO Y Z, HU H, YANG Y, et al. Downregulation of enhancer of zeste homolog 2 (EZH2) is essential for the Induction of autophagy and apoptosis in colorectal cancer cells[J]. Genes (Basel), 2016, 7(10): E83. |
[15] |
WEI F Z, CAO Z Y, WANG X, et al. Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway[J]. Autophagy, 2015, 11(12): 2309-2322.
doi: 10.1080/15548627.2015.1117734 |
[16] | 王静如, 巢静波, 陆达伟, 等. 纳米颗粒跟踪分析仪用于二氧化钛纳米颗粒分散及检测[J]. 分析化学, 2021, 49(4): 538-545. |
WANG J R, CHAO J B, LU D W, et al. Dispersion and detection of titanium dioxide nanoparticles based on nanoparticle tracking analysis[J]. Chin J Anal Chem, 2021, 49(4): 538-545. | |
[17] |
WANG F, GAO Y, LV Y, et al. Polycomb-like2 regulates PRC2 components to affect proliferation in glioma cells[J]. J Neurooncol, 2020, 148(2): 259-271.
doi: 10.1007/s11060-020-03538-0 |
[18] | 吴大平, 吴焕良, 郑文宏, 等. IL-6调控miR-204及Notch1促进乳腺癌细胞增殖、迁移和侵袭[J]. 现代免疫学, 2021, 41(5): 380-385. |
WU D P, WU H L, ZHENG W H, et al. IL-6 promotes proliferation, migration and invasion of breast cancer cells by regulating miR-204 and Notch1[J]. Curr Immunol, 2021, 41(5): 380-385. | |
[19] |
KOSAKA N, IGUCHI H, HAGIWARA K, et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis[J]. J Biol Chem, 2013, 288(15): 10849-10859.
doi: 10.1074/jbc.M112.446831 pmid: 23439645 |
[20] | 苏建伟, 韦庆臣, 周喜汉. 肿瘤来源的外泌体在肿瘤微环境调控作用的研究进展[J]. 右江医学, 2016, 44(4): 456-458. |
SU J W, WEI Q C, ZHOU X H. Progress in the regulation of tumor-derived exosomes in tumor microenvironment[J]. Chin Youjiang Med J, 2016, 44(4): 456-458. | |
[21] |
CREA F, FORNARO L, BOCCI G, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis[J]. Cancer Metastasis Rev, 2012, 31(3/4): 753-761.
doi: 10.1007/s10555-012-9387-3 |
[22] | FERRARO A, BONI T, PINTZAS A. EZH2 regulates cofilin activity and colon cancer cell migration by targeting ITGA2 gene[J]. PLoS One, 2014, 9(12): e115276. |
[23] |
CHENG L L, ITAHANA Y, LEI Z D, et al. TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep)[J]. Clin Cancer Res, 2012, 18(15): 4201-4212.
doi: 10.1158/1078-0432.CCR-12-0036 pmid: 22675170 |
[24] |
BRACKEN A P, PASINI D, CAPRA M, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer[J]. EMBO J, 2003, 22(20): 5323-5335.
pmid: 14532106 |
[25] |
CHU C S, LO P W, YEH Y H, et al. O-GlcNAcylation regulates EZH2 protein stability and function[J]. Proc Natl Acad Sci USA, 2014, 111(4): 1355-1360.
doi: 10.1073/pnas.1323226111 |
[26] | MAHARA S, LEE P L, FENG M, et al. HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer[J]. Proc Natl Acad Sci U S A, 2016, 113(26): E3735-E3744. |
[27] |
TAKAHASHI K, OTA Y, KOGURE T, et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer[J]. Cancer Sci, 2020, 111(1): 98-111.
doi: 10.1111/cas.14232 |
[28] |
NIETO M A, HUANG R Y J, JACKSON R A, et al. Emt: 2016[J]. Cell, 2016, 166(1): 21-45.
doi: 10.1016/j.cell.2016.06.028 pmid: 27368099 |
[29] | 戴京, 叶茂. 去泛素化酶在肿瘤上皮间质转化中的作用[J/OL]. 中国生物化学与分子生物学报: 1-12. |
DAI J, YE M. The role of deubiquitinase in epithelial-mesenchymal transition of tumors[J/OL]. Chin J Biochem Mol Biol: 1-12. | |
[30] |
LAMOUILLE S, XU J, DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
doi: 10.1038/nrm3758 |
[31] | 史博, 朱俊玲, 张晋, 等. EZH2调节E-cadherin对胶质瘤细胞生物学行为影响的实验研究[J]. 临床肿瘤学杂志, 2021, 26(2): 117-121. |
SHI B, ZHU J L, ZHANG J, et al. Effect of EZH2 on proliferation, invasion and migration of glioma cells through regulating E-cadherin[J]. Chin Clin Oncol, 2021, 26(2): 117-121. | |
[32] |
D’ANGELO V, IANNOTTA A, RAMAGLIA M, et al. EZH2 is increased in paediatric T-cell acute lymphoblastic leukemia and is a suitable molecular target in combination treatment approaches[J]. J Exp Clin Cancer Res, 2015, 34: 83.
doi: 10.1186/s13046-015-0191-0 |
[33] |
ZHOU X, ZANG X, GUAN Y, et al. Targeting enhancer of zeste homolog 2 protects against acute kidney injury[J]. Cell Death Dis, 2018, 9(11): 1067.
doi: 10.1038/s41419-018-1012-0 pmid: 30341286 |
[34] |
THIERY J P, ACLOQUE H, HUANG R Y J, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376 |
[35] | 刘俊骥, 刘兰, 颜赞芳, 等. 细胞粘附蛋白、HER-2、ZO-1和VEGF与弥漫型胃癌侵袭转移的相关性研究[J]. 实用癌症杂志, 2019, 34(5): 714-717. |
LIU J J, LIU L, YAN Z F, et al. Study on the relationship between HER-2ZO-1 and VEGF and invasion and metastasis of diffuse gastric carcinoma[J]. Pract J Cancer, 2019, 34(5): 714-717. | |
[36] | 李英彬, 孙圣荣. 水通道蛋白4在乳腺癌细胞侵袭转移中的作用[J]. 临床外科杂志, 2020, 28(1): 54-57. |
LI Y B, SUN S R. Effect of aquaporin AQP4 in invasion and metastasis of breast cancer cells[J]. J Clin Surg, 2020, 28(1): 54-57. | |
[37] |
CHEN Q, BOIRE A, JIN X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604): 493-498.
doi: 10.1038/nature18268 |
[1] | SUN Rongqi, SONG Ning, ZHENG Wentian, ZHANG Xinyue, LI Minmin, GONG Hui, JIANG Yingying. Effect of long noncoding RNA FLJ30679 on proliferation and migration of oral squamous cell carcinoma cells [J]. China Oncology, 2024, 34(5): 439-450. |
[2] | LIU Xuerou, YANG Yumei, ZHAO Qian, RONG Xiangyu, LIU Wei, ZHENG Ruijie, PANG Jinlong, LI Xian, LI Shanshan. Research progress on the role of glutamine metabolism-related proteins in tumor metastasis [J]. China Oncology, 2024, 34(1): 97-103. |
[3] | JIA Liqing, GE Xiaolu, JIANG Lin, ZHOU Xiaoyan. Effects of lncRNA PKD2-2-3 on cell proliferation, clone formation, migration, and invasion of lung adenocarcinoma [J]. China Oncology, 2023, 33(8): 717-725. |
[4] | ZHANG Qixiang, YOU Yongping. ZDHHC12 regulates tumor properties through YAP1 in glioblastoma [J]. China Oncology, 2022, 32(6): 527-534. |
[5] | MU Jiaqian, TENG Xiaoyan, WEI Lirong, QIU Rong, GUI Pengcheng, DU Yuzhen. The role and application value of integrin β3 in bone metastasis of lung adenocarcinoma [J]. China Oncology, 2022, 32(4): 351-356. |
[6] | LIAO Xinghe, LIU Zhantao, LIU Minghui. Glioma stem cell-derived exosomal lncRNA HOXA-AS2 promoted proliferation, migration, invasion and stemness in glioma [J]. China Oncology, 2022, 32(12): 1218-1228. |
[7] | ZHANG Xuecheng , GUAN Xiaohui . Circ_0007142 accelerates epithelial-mesenchymal transition and invasion of gastric cancer cells through sponging miR-647 and regulating CCR8 gene [J]. China Oncology, 2021, 31(8): 714-724. |
[8] | XIE Jinfang , CAO Chunyu , REN Xue , TIAN Jiajun , LÜ Yafeng , HUANG Xiaofei . Effects of sulforaphane on epithelial-mesenchymal transition, proliferation and migration of mouse breast cancer 4T1 cells [J]. China Oncology, 2021, 31(7): 605-615. |
[9] | YE Xingming , WANG Lin , JIA Jing , WU Xiufeng , CHEN Ying . miR-375 targeting YAP1 modulates trastuzumab resistance through epithelial-mesenchymal transition in breast cancer cells [J]. China Oncology, 2021, 31(1): 27-34. |
[10] | PAN Xinghao, LIU Mingbin, ZHANG Xiaoyan, XU Jianqing. Advances in research of exosomes as targeted therapeutic vectors [J]. China Oncology, 2020, 30(9): 701-706. |
[11] | FENG Bo, WANG Gaoyan, LIANG Xiaoliang, WU Zheng, GUO Yanli, SHEN Supeng, GUO Wei. The expression level of FAM83H in esophageal squamous cell carcinoma and its effect on biological characteristics of esophageal cancer cells [J]. China Oncology, 2020, 30(9): 674-681. |
[12] | WEI Lirong , TENG Xiaoyan , XIA Qianlin , DU Yuzhen . STC1 induces epithelial-mesenchymal transition to promote invasion and migration of lung cancer cells [J]. China Oncology, 2020, 30(7): 497-504. |
[13] | WANG Xiaoqin, FU Xinlei, MA Ruyue, YANG Lina, CHEN Yaping, ZHANG Liwen. Sema3A regulates metastasis through epithelial-mesenchymal transition/matrix metalloproteinase-2 in epithelial ovarian cancer [J]. China Oncology, 2020, 30(6): 428-434. |
[14] | SHEN Xuefang, HUA Qing, WANG Jing, XU Pingbo. EMT-TFs are predictors in lung cancer diagnosis and prognosis [J]. China Oncology, 2020, 30(4): 284-292. |
[15] | KANG Qingjie, XIANG Zheng. Glioma-associated oncogene homologue 2 promotes epithelial-mesenchymal transition in colon cancer cell line SW620 [J]. China Oncology, 2020, 30(4): 254-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd