China Oncology ›› 2025, Vol. 35 ›› Issue (2): 249-254.doi: 10.19401/j.cnki.1007-3639.2025.02.012
• Review • Previous Articles
CAI Shuyue1,2(), XIE Quan1,2, ZHOU Yuxuan1,2, LIU Qingzhu2, QIU Ling1,2, LIN Jianguo1,2(
)
Received:
2024-10-01
Revised:
2024-12-28
Online:
2025-02-28
Published:
2025-03-19
Supported by:
Share article
CLC Number:
CAI Shuyue, XIE Quan, ZHOU Yuxuan, LIU Qingzhu, QIU Ling, LIN Jianguo. Latest progress and prospect of NRP-1 targeted molecular probes for breast cancer diagnosis[J]. China Oncology, 2025, 35(2): 249-254.
Tab. 1
Different types of NRP-1 targeted probes for diagnosing breast cancer"
Probes | Imaging mode | Advantages and disadvantages | Applicable scenarios |
---|---|---|---|
[68Ga]Ga-NOTA-PEG4-CK2[ | PET | High sensitivity and rapid metabolism, only be imaged within 1 h | Early diagnosis and treatment monitoring |
68Ga-DOTA-RGD-ATWLPPR[ | PET | Dual-target accurate imaging, fewer detection models | Early diagnosis and precise localization of tumors |
99mTc-CK3[ | SPECT | Prolonged imaging (at least 4 h), lower resolution | Tumor diagnosis and staging |
[99mTc]Tc-HYNIC-A7R /[99mTc]Tc-HYNIC-DA7R[ | SPECT | Rapid renal clearance, lower resolution | Tumor diagnosis and treatment monitoring |
99mTc-HYNIC-iRGD[ | SPECT | Dual-target accurate imaging, lower resolution | Tumor diagnosis and treatment monitoring |
Cy5-CK3[ | NIRF | Prolonged imaging (at least 12 h), background interference | Image-guided surgery |
QS-1/QS-2[ | NIRF | Prolonged imaging (at least 96 h), poorer tissue penetration | Image-guided surgery |
RPP@TQTCD[ | NIRF | Targeting tumors with photothermal therapy, high non-target tissue uptake | Integration of diagnosis and treatment |
FPPT@Axi[ | NIRF | Prolonged imaging (at least 24 h), combining photodynamic therapy | Integration of diagnosis and treatment |
[68Ga]Ga-NODAGA-K(Cy5)DKPPR[ | NIRF/PET | Comprehensive image information, complex preparation | PET for diagnosis and NIRF for guided surgery |
[1] | CIFUENTES C, OESTE C L, FERNÁNDEZ-PISONERO I, et al. Unmutated RRAS2 emerges as a key oncogene in post-partum-associated triple negative breast cancer[J]. Mol Cancer, 2024, 23(1): 142. |
[2] | LI C Y, WANG W H, LEUNG C H, et al. KDM5 family as therapeutic targets in breast cancer: pathogenesis and therapeutic opportunities and challenges[J]. Mol Cancer, 2024, 23(1): 109. |
[3] |
曹晓珊, 杨蓓蓓, 丛斌斌, 等. 三阴性乳腺癌脑转移治疗的研究进展[J]. 中国癌症杂志, 2024, 34(8): 777-784.
doi: 10.19401/j.cnki.1007-3639.2024.08.007 |
CAO X S, YANG B B, CONG B B, et al. The progress of treatment for brain metastases of triple-negative breast cancer[J]. China Oncol, 2024, 34(8): 777-784. | |
[4] |
JIANG Z F, OUYANG Q C, SUN T, et al. Toripalimab plus nab-paclitaxel in metastatic or recurrent triple-negative breast cancer: a randomized phase 3 trial[J]. Nat Med, 2024, 30(1): 249-256.
doi: 10.1038/s41591-023-02677-x pmid: 38191615 |
[5] | 中国抗癌协会乳腺癌专业委员会, 中国抗癌协会国际医疗交流分会, 中国医师协会肿瘤医师分会乳腺癌学组. 中国晚期三阴性乳腺癌临床诊疗指南(2024版)[J]. 中华肿瘤杂志, 2024, 46(6): 471-480. |
Society of Breast Cancer China Anti-Cancer Association; International Medical Exchange Society, China Anti-Cancer Association; Breast Cancer Group, Branch of Oncologist, Chinese Medical Doctor Association. Guidelines for clinical diagnosis and treatment of advanced triple-negative breast cancer in China (2024 edition)[J]. Chin J Oncol, 2024, 46(6): 471-480. | |
[6] |
SAAVEDRA C, GION M, CORTÉS J, et al. Top advances of the year: breast cancer[J]. Cancer, 2023, 129(12): 1791-1794.
doi: 10.1002/cncr.34752 pmid: 37014257 |
[7] | ADRADA B E, MOSELEY T W, KAPOOR M M, et al. Triple-negative breast cancer: histopathologic features, genomics, and treatment[J]. Radiographics, 2023, 43(10): e230034. |
[8] | STOUT N K, MIGLIORETTI D L, SU Y R, et al. Breast cancer screening using mammography, digital breast tomosynthesis, and magnetic resonance imaging by breast density[J]. JAMA Intern Med, 2024, 184(10): 1222-1231. |
[9] |
SAVVA K V, MACKENZIE A, COOMBES R C, et al. An original study assessing biomarker success rate in breast cancer recurrence biomarker research[J]. BMC Med, 2024, 22(1): 307.
doi: 10.1186/s12916-024-03460-6 pmid: 39075505 |
[10] | GE S S, JIA T T, SHI J Y, et al. A cutting-edge 68Ga-labeled bicyclic peptide PET molecular probe for noninvasive assessment of Nectin4 expression[J]. Bioorg Chem, 2024, 152: 107745. |
[11] |
GOMEZ K, DURAN P, TONELLO R, et al. Neuropilin-1 is essential for vascular endothelial growth factor A-mediated increase of sensory neuron activity and development of pain-like behaviors[J]. Pain, 2023, 164(12): 2696-2710.
doi: 10.1097/j.pain.0000000000002970 pmid: 37366599 |
[12] | AL-ZEHEIMI N, GAO Y, GREER P A, et al. Neuropilin-1 knockout and rescue confirms its role to promote metastasis in MDA-MB-231 breast cancer cells[J]. Int J Mol Sci, 2023, 24(9): 7792. |
[13] | CONTE C, LONGOBARDI G, BARBIERI A, et al. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer[J]. Int J Pharm, 2023, 633: 122618. |
[14] | THOMAS L, LOW S, HANSEN G L, et al. BI-Y, an neuropilin-1 antagonist, enhances revascularization and prevents vascular endothelial growth factor-a induced retinal hyperpermeability in rodent models of retinopathies[J]. J Pharmacol Exp Ther, 2023, 385(3): 214-221. |
[15] | CHEN Y H, GIALELI C, SHEN J Y, et al. Identification of an osteopontin-derived peptide that binds neuropilin-1 and activates vascular repair responses and angiogenesis[J]. Pharmacol Res, 2024, 205: 107259. |
[16] | CECI C, RUFFINI F, FALCONI M, et al. Pharmacological inhibition of PDGF-C/neuropilin-1 interaction: a novel strategy to reduce melanoma metastatic potential[J]. Biomed Pharmacother, 2024, 176: 116766. |
[17] | WANG Y, ZHANG L, SUN X L, et al. NRP1 contributes to stemness and potentiates radioresistance via WTAP-mediated m6A methylation of Bcl-2 mRNA in breast cancer[J]. Apoptosis, 2023, 28(1/2): 233-246. |
[18] | LI Y Y, FENG Q Q, GAO Q, et al. PTX-RPPR, a conjugate of paclitaxel and NRP-1 peptide inhibitor to prevent tumor growth and metastasis[J]. Biomed Pharmacother, 2024, 178: 117264. |
[19] | MA X, LIU H N, SHI C C, et al. Bioinformatics analysis and clinical significance of NRP-1 in triple-negative breast cancer[J]. Heliyon, 2024, 10(5): e27368. |
[20] | PUSZKO A K, SOSNOWSKI P, HERMINE O, et al. Structure-activity relationship studies and biological properties evaluation of peptidic NRP-1 ligands: investigation of N-terminal cysteine importance[J]. Bioorg Med Chem, 2023, 94: 117482. |
[21] | 李润尚, 李林法. 肿瘤分子影像探针的研究进展[J]. 中国肿瘤, 2024, 33(10): 862-870. |
LI R S, LI L F. Research progress on molecular imaging probes of malignant tumors[J]. China Cancer, 2024, 33(10): 862-870. | |
[22] | LIU Q Z, CAI S Y, YE J C, et al. Preclinical evaluation of 68Ga-labeled peptide CK2 for PET imaging of NRP-1 expression in vivo[J]. Eur J Nucl Med Mol Imaging, 2024, 51(7): 1826-1840. |
[23] | SU H X, ZHAO L Z, YU B H, et al. Preparation and bioevaluation of [99mTc] Tc-labeled A7R and DA7R for SPECT imaging of triple-negative breast cancer[J]. New J Chem, 2022, 46(44): 21401-21408. |
[24] | CHEN G, HE P B, MA C, et al. Biodegradable ICG-conjugated germanium nanoparticles for in vivo near-infrared dual-modality imaging and photothermal therapy[J]. ACS Appl Mater Interfaces, 2024, 16(44): 59752-59764. |
[25] | QIN S, LIU Q Z, LI K, et al. Neuropilin 1-targeted near-infrared fluorescence probes for tumor diagnosis[J]. Bioorg Med Chem Lett, 2023, 84: 129196. |
[26] | 邹志凤, 高晶, 来旖, 等. 主动靶向近红外二区诊疗一体化纳米颗粒用于三阴性乳腺癌的研究[J]. 分析化学, 2022, 50(6): 912-923. |
ZOU Z F, GAO J, LAI Y, et al. Tumor-targeted theranostic probe for near infrared Ⅱ window fluorescence imaging and anticancer therapy of triple-negative breast cancer[J]. Chin J Anal Chem, 2022, 50(6): 912-923. | |
[27] | XUE X, LI Q Y, ZHANG P J, et al. PET/NIR fluorescence bimodal imaging for targeted tumor detection[J]. Mol Pharm, 2023, 20(12): 6262-6271. |
[28] | ZHAO X Y, ZHANG G J, CHEN J L, et al. A rationally designed nuclei-targeting FAPI 04-based molecular probe with enhanced tumor uptake for PET/CT and fluorescence imaging[J]. Eur J Nucl Med Mol Imaging, 2024, 51(6): 1593-1604. |
[29] | MOUSSARON A, JOUAN-HUREAUX V, COLLET C, et al. Preliminary study of new gallium-68 radiolabeled peptide targeting NRP-1 to detect brain metastases by positron emission tomography[J]. Molecules, 2021, 26(23): 7273. |
[30] | YAO L L, LI Y S, CHEN H J, et al. Dual targeting of integrin αvβ3 and neuropilin-1 receptors improves micropositron emission tomography imaging of breast cancer[J]. Mol Pharm, 2022, 19(5): 1458-1467. |
[31] | FENG G K, LIU R B, ZHANG M Q, et al. SPECT and near-infrared fluorescence imaging of breast cancer with a neuropilin-1-targeting peptide[J]. J Control Release, 2014, 192: 236-242. |
[32] | YU B H, SU H X, ZHAO L Z, et al. 99mTc-labeled iRGD for single-positron emission computed tomography imaging of triple-negative breast cancer[J]. Front Bioeng Biotechnol, 2022, 10: 1001899. |
[33] | LI X Y, YAN N, WU Y Y, et al. Neuropilin-1-targeted nanomedicine for spatiotemporal tumor suppression through photodynamic vascular damage and antiangiogenesis[J]. ACS Appl Mater Interfaces, 2024, 16(17): 21709-21721. |
[34] | SCHWENCK J, SONANINI D, COTTON J M, et al. Advances in PET imaging of cancer[J]. Nat Rev Cancer, 2023, 23(7): 474-490. |
[35] | NANNI C, FAROLFI A, CASTELLUCCI P, et al. Total body positron emission tomography/computed tomography: current status in oncology[J]. Semin Nucl Med, 2025, 55(1): 31-40. |
[36] | SHABSIGH M, SOLOMON L A. Peptide PET imaging: a review of recent developments and a look at the future of radiometal-labeled peptides in medicine[J]. Chem Biomed Imaging, 2024, 2(9): 615-630. |
[37] |
LU L, CHEN H Y, HAO D K, et al. The functions and applications of A7R in anti-angiogenic therapy, imaging and drug delivery systems[J]. Asian J Pharm Sci, 2019, 14(6): 595-608.
doi: 10.1016/j.ajps.2019.04.004 pmid: 32104486 |
[38] | LIU S Y, XU W J, LI X X, et al. BOIMPY-based NIR-Ⅱ fluorophore with high brightness and long absorption beyond 1 000 nm for in vivo bioimaging: synergistic steric regulation strategy[J]. ACS Nano, 2022, 16(10): 17424-17434. |
[39] | WANG M Z, WANG Y, FU Q R. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo[J]. Mater Today Bio, 2024, 26: 101027. |
[40] | GU Q S, YANG Z C, CHAO J J, et al. Tumor-targeting probe for dual-modal imaging of cysteine in vivo[J]. Anal Chem, 2023, 95(33): 12478-12486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd